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A boundary integral technique for the dynamics 
of a shear band

Shear bands are localized deformations that are the preferential near-failure deformation mode 
of ductile materials. These emerge in a solid where a discontinuity in the velocity field 
appears. Following the model introduced by Bigoni e Dal Corso [1], a shear band can be 
represented with two surfaces fixed together with a set of zero thickness hinged quadrilaterals, 
so the material can only freely slide (Fig. 1).

Considering a perturbative approach is possible to represent the velocity field by using the time-
harmonic Green's functions, found by Bigoni e Capuani [2], employed as a dynamic 
perturbation.

Figure 1: Schematization of the shear 

Abstract
A shear band in an infinite, non-linear elastic and incompressible body, prestressed with an homogeneous initial deformation is considered.  A boundary integral formulation 
(BEM-Boundary Element Method) has been developed to obtain the displacement field for the incremental problem of time-harmonic Green’s functions.  
Numerical simulations for a J2-deformation theory show for each state of prestress/anisotropy, a peak in the deformation of the shear band surface,  that could represent a sort of 
resonance. In particular for different inclinations of the shear band with respect to the orthotropy axes, it is shown that if the inclination is equal to that of the real propagation of 
the band, the amount of the displacement in the middle of the shear band is maintained for very high frequencies.

The Boundary Element Method 

 The BEM uses equation (3) to find the jump         applying unitary tractions on the shear band 
boundary. The discretizazion is performed on the shear band boundary and the displacement is 
represented with linear shape functions, then equation (3) becomes:

To validate the method, is possible to compare the numerical results with the analitical solution 
found by Bigoni & Dal Corso [1] for the quasi-static case.

number of discretization

Figure 3: Percentual error of the displacement 
between the analitical and the numerical solution in 
the middle of the shear band. For a discretization with 
500 elements, the error estimated is 0.26%.  
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Figure 2: Displacements of the shear band surface for different discretization of the BEM. In red the 
numerical solution and in blue the analitical solution.

Numerical results:

From Fig. 6 it can be noted that the maximum displacement is achieved for a null shear band 
inclination, corresponding to the condition when the band is orthogonal to the direction of 
wave propagation. Although the maximum displacement decreases at increasing value of the 
band inclination, a different trend appears for an angle of 27.36°, for which the amplitude of 
the displacement is mantained for very high frequencies with respect to the other cases. Such 
an inclination is known from quasistatic analysis to be the shear band propagation angle, 
depending on the anisotropy parameter through the equation:

λ

Below is considered a pre-existing shear band with different inclination with respect to the 
orthotropy axes.

Figure 6: Displacement of the central element of the shear band surface at the vary of the frequency 
for different inclination of the shear band .
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Once the jump in the displacement is known, the displacement field can be obtained through 
equation (2).

Figure 7: Displacement field of the shear 
band for a quasi-static case.

The frequency      depends on the lenght    of the shear band, an anisotropy parameter     and the 
wave lenght    :
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Figure 4:  Jump of the displacement      along 
the shear band surface for increasing 
frequencies    . For low frequencies     has a 
simil-parabolic trend with maximum value in 
corrispondence of the middle of the shear 
band , but for higher frequencies it becomes a 
simil-sinusoidal trend. 

Figure 5: Jump       in the middle of the shear band 
(   =0), at the vary of the frequency. Starting from 
the quasi-static case (null frequency) the trend 
shows an increasing of the displacement  up to a 
23%  where it  reaches a peack that could represent 
a sort of resonance. After, it decades moving to the 
quasi-sinusoidal trend.
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where      is the Green's displacement,     is the displacement of the shear band surface,      is the 
Green's traction and    the normal versor on the shear band surface. The double brackets     
denote the jump of the relevant argument across the shear band. The boundary conditions on 
the sliding surfaces are:

-        =0     null incremental nominal shearing tractions
-        =0     continuity of the incremental nominal normal traction
-        =0     continuity of normal incremental displacement

then it's possible to explicit the equation of the displacement field and the constitutive equation:

Figure 8: Displacement field of the shear 
band for a dynamic case with wave lenght 
of     =2 l.
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