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Summary Particles in rotating saddle potentials exhibit precessional motion which, up to now, has been explained by explicit computation. We 
show that this precession is due to a hidden gyroscopic force which, unlike the standard Coriolis force, is present in the inertial frame. We do so 

by finding a hodograph-like “guiding center” transformation using the method of normal form, which yields a simplified equation for the guiding 

center of the trajectory that coincides with the equation of the Foucault’s pendulum. In this sense, a particle trapped in the symmetric rotating 

saddle trap is, effectively, a Foucault’s pendulum, but in the inertial frame. 

 

INTRODUCTION 

 

   The existence of Trojan asteroids in a triangular Lagrange libration point on the orbit of Jupiter is a consequence of the 

basic fact that a particle can be trapped in the rotating saddle potential [4,9]. Stability conditions for a heavy particle sliding 

without friction on a rotating saddle surface in the presence of gravity (Fig. 1) were obtained by Brouwer as early as 1918 

[1,11]. Brouwer explicitly demonstrated that the saddle can be stabilized by rotation of the potential (in two dimensions) in 

contrast to the Paul trap for suspending charged particles in an oscillating electric field by analogy with the so-called 

Stephenson-Kapitsa pendulum in which the upside-down equilibrium is stabilized by vibration of the pivot [3]. Stabilization  

of the unstable saddle equilibrium by both rotation and vibration is well described by the concept of effective potential, which 

is equal to the kinetic energy of the high frequency motions of the system generated by the imposed oscillating field and 

affects the energy spectrum of the averaged motion [5-7]. In the case when the saddle potential is symmetric, the trajectory 

of the particle trapped by the rotating saddle in the non-rotating frame exhibits a slow prograde precession, Fig 1. This 

somewhat mysterious precession discovered first in the context of accelerator physics [2] and particle traps [8-10] is specific 

in that the standard averaging methods do not grasp the phenomenon [6]. 

 

 
 

Fig. 1 (Left) A heavy particle on a symmetric rotating saddle surface and (right) prograde precession of its orbit in the non -

rotating frame (figure adapted from [12]) 

 
HODOGRAPH TRANSFORMATION AND THE GUIDING CENTER EQUATION 

 

   We consider a point mass sliding without friction on a saddle surface rotating about a vertical axis  with the angular velocity 

, , Fig 1. Assuming the principal curvatures of the saddle at the equilibrium point to be equal, linearized  

equations near the equilibrium in the non-rotating frame after appropriate rescaling of time take form 

 

                                     (1)  

where 

 



 
 

Fig. 2 (Left) Trajectory of the guiding center u (thick curve) tracking the corresponding trajectory x (thin curve). The view is 

in the inertial frame with = 0.45. (Right) A possible mechanical realization of the rotating saddle trap. Here, x and y are the 

angular variables of the inverted pendulum, and the graph of the potential energy is shown (figure adapted from [12]). 

 

   Theorem. Given a vector function , consider its “guiding center”, or the “hodograph” image 

 

 

If  is a solution of (1), then  satisfies 

 

 

 

where  is a  function linear in ,  and analytic in , in a fixed neighbourhood of . The guiding center therefore 

behaves, (ignoring the  - terms) as a point charge of unit mass in the potential  in the magnetic field of 

constant magnitude  perpendicular to the -plane. 

 

Fig.2 illustrates a possible mechanical implementation of the rotating saddle trap as a light rod with a massive ball mounted 

on a turntable via a ball joint. Two springs are attached to the rod, and the height of the ball is adjustable, like in a metronome. 

If the ball is placed sufficiently low then the springs will stabilize the pendulum in the x-direction while the y-direction remains  

unstable; thus, the potential acquires a saddle shape. 

 

CONCLUSIONS 

 

   We demonstrated that the rapid rotation of the symmetric saddle potential creates a weak Lorentz-like, or a Coriolis-like force, 

in addition to an effective stabilizing potential - all in the inertial frame. As a result, the particle in the rotating saddle exhibits, in 

addition to oscillations caused by effective restoring force, a slow prograde precession in the inertial frame caused by this pseudo-

Coriolis effect. By finding a hodograph-like “guiding center” transformation using the method of normal form, we found the 

effective equations of this precession that coincide with the equations of the Foucault's pendulum. 
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