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Different from Cauchy elastic materials, generalized
continua, and in particular constrained Cosserat
materials, can be designed to possess extreme
(near a failure of ellipticity) orthotropy properties
and in this way to model folding in a three-
dimensional solid. Following this approach, folding,
which is a narrow zone of highly localized bending,
spontaneously emerges as a deformation pattern
occurring in a strongly anisotropic solid. How this
peculiar pattern interacts with wave propagation
in the time-harmonic domain is revealed through
the derivation of an antiplane, infinite-body Green’s
function, which opens the way to integral techniques
for anisotropic constrained Cosserat continua. Viewed
as a perturbing agent, the Green’s function shows
that folding, emerging near a steadily pulsating source
in the limit of failure of ellipticity, is transformed
into a disturbance with wavefronts parallel to the
folding itself. The results of the presented study
introduce the possibility of exploiting constrained
Cosserat solids for propagating waves in materials
displaying origami patterns of deformation.

This article is part of the themed issue ‘Patterning
through instabilities in complex media: theory and
applications’.

1. Introduction
Folding is a mechanical process involving the formation
of a narrow, highly curved element separating large
zones of low curvature. Although this feature is only
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scarcely present in natural systems, it can have important technological applications connected
to the realization of origami-inspired transformable materials [1]. A usual approach to folding
is in terms of localization of bending in a post-bifurcation deformation pattern, a phenomenon
involving large strain [2,3]. Another approach explains folding as induced by deformation of a
generalized continuum working in proximity of a material instability threshold, namely failure
of ellipticity [4–6]. The latter approach was developed for constrained Cosserat elastic materials
with extreme orthotropy, by employing a quasi-static Green’s function as a perturbation to show
that ellipticity loss induces stress channelling, folding and faulting. In this article, the acoustic
tensor is derived, and wave propagation conditions are explored for anisotropic constrained
Cosserat solids, with full account of microinertia. For these materials, a new infinite-body, time-
harmonic Green’s function is obtained under antiplane deformation and used to explore the
dynamical behaviour of an extremely orthotropic material prone to folding. Results show that
folding localizes at the steadily pulsating force applied as a perturbation to a constrained Cosserat
material with extreme orthotropy and waves emanate from the source that degenerate into plane
disturbances parallel to the direction of ellipticity loss. Moreover, maps of displacements reveal
the emergence of complex patterns of deformation, typical of the material instability of a Cosserat
continuum. Special attention is devoted to the presence of rotational microinertia. This feature is
explored as connected to pattern formation. It is shown that its magnitude can change the sign
of the lower-order derivatives in the differential equations of motion, so that its effect on the
emergence of deformation patterns is very complex and sometimes counterintuitive. In fact, as
related to the presence of microinertia, the formation of a folding wave propagating along the
discontinuity lines is shown to become possible.

2. Dynamics of couple-stress elasticity
In this section, the basic elastodynamic equations are introduced for linear anisotropic couple-
stress solids. A detailed presentation of the couple-stress theory (called also ‘constrained Cosserat
theory’) can be found in [7] (see also [4,8]).

The kinetic nergy density, evaluated with respect to an inertial frame of reference, differs from
the classical form due to the presence of the microinertia of the continuum which measures,
through the symmetric structural tensor h2

pq, the effect of the spin ω̇p. It can be written as [9, p.
248]

T = 1
2
ρu̇qu̇q + ρ

6
h2

pqω̇pω̇q, (2.1)

where ρ > 0 is the mass density, uq is the displacement vector, ωq = 1
2 eqpkuk,p the rotation vector

(eqpk is the Levi-Civita alternating symbol) and the superposed dot denotes time differentiation.
The components of the structural microinertia tensor h2

pq have the dimensions of a squared length.
In the following, rectangular Cartesian coordinates are employed together with indicial notation
and the usual summation convention on repeated indices.

The microinertia of the continuum introduces a more detailed description of motion in the
present theory than in the Cauchy (or ‘classical’ in the following) theory.1 Nonetheless, as a
particular case of the developed theory, the rotary microinertia tensor h2

pq can be set equal to
zero, so that in this simple case the spin does not play a role in the kinetic energy.

1When a dynamic motion is considered in a non-inertial frame, the presence of inertia and microinertia in the equation
of motion and in the boundary conditions may violate the assumption of Euclidean objectivity. As Jaunzemis [9, p. 233]
points out, the issue of objectivity, in such cases, can be circumvented by introducing an objective generalized (effective)
body force and an objective generalized body couple. The generalized body force Xq − ρüq (cf. (2.2)) is defined as the
difference of the standard body force and the inertia term (related to the acceleration), whereas the generalized body couple
Yq − 1

3 ρh2
pqω̈p (cf. (2.3)) is defined as the difference of the standard body couple and the microinertia term (related to the

acceleration gradient in the constrained Cosserat theory). The generalized body force and body couple are assumed to be
objective although their constituents are not (see also [10]). It is remarked that throughout this study an inertial frame is
employed.
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Employing the balance laws for linear and angular momentum, the local forms of the equations
governing the dynamics of a constrained Cosserat medium are obtained [8,11]:

σpq,p + Xq = ρüq (2.2)

and

eqpkσpk + mpq,p + Yq =
ρh2

pq

3
ω̈p, (2.3)

where σpq and mpq denote the stress and couple-stress tensors (both asymmetric), and Xq and Yq

are, respectively, the body force and the body moment, both measured per unit volume.
Decomposing the stress tensor σpq into a symmetric τpq and antisymmetric αpq part and using

equation (2.3), the antisymmetric part of the stress tensor can be written as

αpq = −1
2

epqk(mrk,r + Yk) + ρ

6
epqkh

2
ksω̈s. (2.4)

A combination of equations (2.2)–(2.4) yields a single equation of motion for the symmetric part
of the stress tensor and the deviatoric part of the couple-stress tensor:

τpq,p − 1
2

epqkmrk,rp + Xq − 1
2

epqkYk,p = ρüq − ρ

6
epqkh

2
ksω̈s,p. (2.5)

The traction boundary conditions at any point on a smooth boundary consist of the following
three reduced force-tractions and two tangential couple-tractions [7,12]:

P(n)
q = σpqnp − 1

2 eqpknpm(nn),k, R(n)
q = mpqnp − m(nn)nq, (2.6)

where np denotes the unit normal to the boundary, and m(nn) is the normal component of the
couple-stress tensor mpq, so that m(nn) = mpknpnk.

For linear constitutive behaviour, the strain energy density assumes the following general
quadratic form in the case of centrosymmetric materials:

W = 1
2 Cpqmnεpqεmn + 1

2 Bpqmnκpqκmn, (2.7)

where εpq is the standard infinitesimal strain tensor and κpq =ωq,p is the curvature tensor (the
transpose of the gradient of rotation), which by definition is traceless, κpp = 0. The elasticity
tensors Cpqmn and Bpqmn are equipped with the following symmetries: Cpqmn = Cmnpq = Cqpnm,
Bpqmn = Bmnpq and Bqpmm = 0 (the last equality follows directly from the fact that the curvature
tensor is purely deviatoric [7]). Therefore, in addition to the 21 independent constants defining
the classical elasticity tensor Cpqmn, 36 independent constants are needed for defining Bpqmn.
The corresponding constitutive equations are

τpq = ∂W
∂εpq

= Cpqmnεmn and mpq = ∂W
∂κpq

= Bpqmnκmn. (2.8)

It is remarked that the Cauchy elastic behaviour is recovered when tensor Bpqmn, defining a
‘purely Cosserat behaviour’, is set to zero. The conditions for positive definiteness of the strain
energy density, strong ellipticity of the elasticity tensors and the related van Hove uniqueness
theorem were given recently in [4]. Moreover, assuming that the kinetic energy density is positive
definite implies, in turn, that h2

pq is also positive definite.
A substitution of the constitutive equations (2.8) into the governing equation (2.5) yields the

equations of motion in terms of the displacements,

Cpqmnun,mp − 1
4

epqkesmnBrktsun,mtrp − 1
2

epqkYk,p + Xq

= ρüq − ρh2
ks

12
epqkesmnün,mp, (2.9)

which represent the counterpart of the Navier–Cauchy equations in the classical theory.
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3. The acoustic tensor and the propagation of plane waves
The propagation of plane harmonic waves is defined through a displacement field in the form

u = d e−i(kn·x−ωt), (3.1)

where i2 = −1, t denotes time, d denotes the wave amplitude vector, n denotes the unit
propagation vector and k denotes the wavenumber, in general complex. Moreover, vector x
denotes the position vector, ω the angular frequency, taken to be real, and V =ω/k the phase
velocity.

A substitution of equation (3.1) into the equations of motion (2.9), with null body forces and
couples, leads to the propagation condition

[A − ρω2(I + Γ )]d = 0, (3.2)

where I is the identity tensor, and

Aqn(k, n) = k2A(C)
qn (n) + k4A(B)

qn (n), Γqn(k, n) = k2 h2
ks

12
epqkesmnnmnp, (3.3)

with

A(C)
qn = Cpqmnnpnm and A(B)

qn = 1
4 epqkesmnnmnpntnrBrkts. (3.4)

Note that the symmetries of the elasticity tensors C and B imply that A(C) and A(B) are symmetric
second-order tensors, and thus A is also symmetric. In addition, the symmetry of tensor h implies
that Γ = Γ T.

As shown in Gourgiotis & Bigoni [4], A(B) is a singular tensor that always possesses one null
eigenvalue corresponding to the eigenvector n, i.e. A(B)n = 0. The same property is shared also by
the tensor Γ , which is related to the microinertia of the continuum. In fact, it can be readily shown
that

Γ n = 0 and det Γ = 0. (3.5)

An immediate consequence of the properties of the tensor Γ is that, if h2 is positive semi-definite,
the two (non-trivially null) eigenvalues of Γ are always non-negative. Under these circumstances,
the tensor I + Γ is always positive definite, and thus invertible. The latter observation enables us to
recast equation (3.2) in the form

[A − ρω2I]M1/2d = 0, (3.6)

where

A = M−1/2AM−1/2 (3.7)

is the acoustic tensor for a constrained Cosserat medium with microinertia and M = I + Γ . Note
that the acoustic tensor is symmetric. Furthermore, for a continuum without microinertia (h2 = 0),
the acoustic tensor reduces to A = A, a case that has been thoroughly examined in [4].

A non-trivial solution to the eigenvalue problem (3.6) exists when

det (A − ρω2I) = 0. (3.8)

Condition (3.8) implies that, for plane waves to propagate with positive speed and for all real
wavenumbers k, the eigenvaluesω2 (to within a multiplicative constant ρ) of the acoustic tensor A
must be strictly positive. Sufficient conditions to ensure wave propagation (WP) in a constrained
Cosserat medium with microinertia are that A is positive definite and h2 is positive semi-definite.
The conditions for tensor A to be positive definite were given in [4]. It should be noted that,
although the eigenvectors M1/2d of the acoustic tensor in equation (3.6) are orthogonal, the
corresponding motion vectors d are generally not.



5

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160159

.........................................................

In the light of the above discussion, the sufficient conditions for (WP) reduce then to the
following inequalities:

p · A(C)p ≥ 0, p · A(B)p ≥ 0

p · h2p ≥ 0

⎫⎬
⎭ ∀ p �= 0, (3.9)

augmented with the condition p · Ap �= 0, so that both ‘=’ cannot simultaneously hold in the first
two inequalities in equations (3.9). In other words, the above conditions imply that the vector p
cannot be an eigenvector corresponding to a null eigenvalue of both the classical part A(C) and
the couple-stress part A(B) of the acoustic tensor. Note that, in the case where the wave amplitude
vector d is parallel to the propagation vector n, equation (3.2) degenerates to the classical condition

A(C)n = ρV2n, (3.10)

which implies that for every couple-stress anisotropy B and microinertia anisotropy h2 at least
one direction of propagation exists such that the wave characteristics are governed only by the
Cauchy elastic part of the constitutive equations. This direction coincides with the direction of
propagation of purely longitudinal P-waves in a classical anisotropic medium (see also [4]).

4. Antiplane deformations for orthotropic couple-stress materials
In this section, the governing dynamical equations and various stability criteria are derived for an
orthotropic couple-stress material, including microinertial effects under antiplane deformations.
It is worth noting that the general three-dimensional quasi-static equations for an orthotropic
couple-stress solid were given in [4]. Moreover, the elastodynamic equations for isotropic couple-
stress materials under antiplane deformations can be found in [13,14].

(a) Governing equations and positive definiteness conditions
For a body occupying a region in the (x, y)-plane under antiplane strain conditions, the
displacement field assumes the following form:

u1 ≡ 0, u2 ≡ 0 and u3 ≡ w(x, y, t). (4.1)

Accordingly, the non-vanishing components of strain, rotation and curvature are given as

εxz = 1
2
∂w
∂x

, εyz = 1
2
∂w
∂y

, ωx = 1
2
∂w
∂y

, ωy = −1
2
∂w
∂x

and κxx = −κyy = 1
2
∂2w
∂x∂y

, κxy = −1
2
∂2w
∂x2 , κyx = 1

2
∂2w
∂y2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

Further, considering an orthotropic centrosymmetric material and assuming that the axes of
orthotropy coincide with the employed rectangular Cartesian system, the constitutive equations
(2.8) reduce to [4]

τxz = c55
∂w
∂x

, τyz = c44
∂w
∂y

(4.3)

and

mxx = −myy = b1

2
∂2w
∂x∂y

, mxy = −b2

2
∂2w
∂x2 + b3

2
∂2w
∂y2 ,

myx = −b3

2
∂2w
∂x2 + b4

2
∂2w
∂y2 , (4.4)

where c44 and c55 are the classical shear moduli characterizing an orthotropic Cauchy material
subject to antiplane conditions, and bq (q = 1, . . . , 4) are the couple-stress orthotropic moduli,
with the dimension of a force (for a detailed discussion on orthotropic couple-stress materials,
the reader is referred to appendix A in [4]). An inspection of the constitutive equations (4.4)
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reveals that there is a direct analogy between a constrained Cosserat material under antiplane
deformation and an orthotropic Kirchhoff plate [15]. Indeed, the couple-stress components mxy

and myx may be identified with the bending moments, and mxx and myy with the twisting
moments, applied on an element of a plate. In this context, the couple-stress parameters b2/2
and b4/2 represent the bending stiffnesses in the principal x- and y-directions, b1/2 the principal
twisting stiffness and b3/2 the stiffness associated with the effects of secondary bending (Poisson’s
effect).

For a positive definite strain energy density (PD), the material moduli must satisfy the
following inequalities:

(PD)C ⇔ c44 > 0, c55 > 0 (4.5)

and

(PD)B ⇔ b1 > 0, b2 > 0, b4 > 0, b2b4 − b2
3 > 0. (4.6)

Moreover, the structural microinertia tensor h2, in the general orthotropic case, has three
independent components {h2

11, h2
22, h2

33}, one for each of the principal axes of orthotropy. In view
of equation (2.4) and assuming zero body couples, the antisymmetric components of the stress
tensor become

αxz = 1
2

(mxy,x + myy,y) − ρ

6
h2

22ω̈y (4.7)

and

αyz = −1
2

(mxx,x + myx,y) + ρ

6
h2

11ω̈x, (4.8)

so that, taking into account equations (4.3), the shear stresses assume the following form in terms
of the out-of-plane displacement:

σxz = c55
∂w
∂x

− 1
4

(
b2
∂3w
∂x3 + (b1 − b3)

∂3w
∂x∂y2

)
+ ρh2

22
12

∂ẅ
∂x

(4.9)

and

σyz = c44
∂w
∂x

− 1
4

(
b4
∂3w
∂y3 + (b1 − b3)

∂3w
∂x2∂y

)
+ ρh2

11
12

∂ẅ
∂y

. (4.10)

Note further that, for the kinetic energy density to be positive definite, the microinertia moduli
must satisfy the following inequalities:

(PD)h ⇔ h2
11 > 0, h2

22 > 0. (4.11)

Finally, the equation of motion for the out-of-plane displacement becomes

c55
∂2w
∂x2 + c44

∂2w
∂y2 − 1

4

(
b2
∂4w
∂x4 + 2b0

∂4w
∂x2∂y2 + b4

∂4w
∂y4

)
+ Xz

= ρẅ − ρh2
22

12
∂2ẅ
∂x2 − ρh2

11
12

∂2ẅ
∂y2 , (4.12)

where b0 = b1 − b3 is a material parameter that accounts for both torsion and secondary bending
effects.

In the case of material isotropy, the stiffness and inertia moduli become c44 = c55 =μ,
b1 = 4η + 4η′, b2 = b4 = 4η, b3 = 4η′ and h2

11 = h2
22 = h2, so that the equation of motion (4.12)

reduces to

μ∇2w − η∇4w + Xz = ρẅ − ρh2

12
∇2ẅ, (4.13)

an equation which, in the absence of body forces, was given first by Clebsch [16, p. 797, equation
(318a)] to describe the motion of a plate, including prestress and rotational inertia effects.
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(b) Time-harmonic response and ellipticity conditions
According to the time-harmonic assumption, the displacement is represented as

w(x, y, t) = w(x, y) eiωt, (4.14)

so that the equation of motion becomes now

1
4

(
b2
∂4w
∂x4 + 2b0

∂4w
∂x2∂y2 + b4

∂4w
∂y4

)
− f55

∂2w
∂x2 − f44

∂2w
∂y2 − ρω2w + Xz = 0, (4.15)

with

f44 ≡ f44(ω) = c44 − ρh2
11

12
ω2 and f55 ≡ f55(ω) = c55 − ρh2

22
12

ω2. (4.16)

In order to classify the partial differential equation (4.15), one has to examine only the principal
(fourth-order) part of the differential operator related with the Cosserat moduli bq (see for
instance Renardy & Rogers [17]). This implies that the classification of equation (4.15) for the
time-harmonic response remains the same as for the quasi-static case. In fact, the latter case
was examined in Gourgiotis & Bigoni [4], where the conditions of ellipticity (E) were explicitly
derived. Here the elliptic regime only is considered, defined through the following conditions [4]:

(E) ⇔ b2 > 0 and b0 >−
√

b2b4, (4.17)

holding for b4 > 0 (the bending stiffness in the y-direction is assumed to be always positive).
In particular, two regimes of ellipticity (E) can be distinguished:

(i) the elliptic imaginary (EI) regime for b2 > 0, b0 ≥ √
b2b4; and

(ii) the elliptic complex (EC) regime for b2 > 0 and −√
b2b4 < b0 <

√
b2b4.

The emergence of weakly discontinuous surfaces corresponds to failure of ellipticity, as in the
quasi-static case [4]. This occurs in a continuous loading path (starting from (E)) either when b2 →
0 with b0 > 0 or when b0 → −√

b2b4 with b2 > 0. The former case defines the elliptic imaginary/
parabolic (EI/P) boundary, and the latter the elliptic complex/hyperbolic (EC/H) boundary. In
both cases, the material exhibits an extreme orthotropic behaviour.

It is further remarked that failure of (PD) and the related loss of uniqueness for a boundary
value problem of antiplane deformation can arise simultaneously with loss of (E). Indeed,
according to equations (4.6) and (4.17), this situation occurs in a Cosserat material for which: (i)
b2 → 0 and b3 → 0, so that ellipticity is lost at the (EI/P) boundary, or (ii) b1 → 0 and b3 → √

b2b4,
so that ellipticity is lost at the (EC/H) boundary. Therefore, a material can be designed to work
in antiplane strain conditions and display extreme behaviours (such as stress channelling and
emergence of localized folding), but still preserving uniqueness of the solution.

Finally, it is interesting to observe that the terms f44 and f55 in equation (4.15) are related to
the lower-order part of the differential operator and may change sign according to the values of
the microinertia parameters (h11, h22). Indeed, for a fixed frequency ω, these terms could become
negative for high values of (h11, h22), which, in turn, implies that, although the equation remains
elliptic, the solution would change character. From the viewpoint of plate theory, such a change of
sign would correspond to passing from tensile to compressive prestress in the x- and y-directions.

(c) SH waves in an orthotropic medium
Antiplane shear (or SH) motions are now examined in a homogeneous orthotropic constrained
Cosserat medium with microinertia. Assuming zero body forces and substituting into the
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equation of motion (4.12) a plane-wave harmonic solution of the form

w(x, y, t) = d3 e−ik(x·n−Vst), (4.18)

the dispersion equation is obtained, relating the phase velocity Vs of SH waves to the
wavenumber k as

V2
s = ρ−1

[
c55n2

x + c44n2
y + k2

4
(b2n4

x + 2b0n2
xn2

y + b4n4
y)

]

×
[

1 + k2

12
(h2

22n2
x + h2

11n2
y)

]−1

. (4.19)

For an orthotropic material under antiplane motions, the only non-vanishing component of the
acoustic tensor is

A33 = (1 + Γ33)−1A33 = ρk2V2
s with Γ33 = k2

12
(h2

22n2
x + h2

11n2
y). (4.20)

The (WP) condition requires that SH waves propagate with real non-zero velocities for all real
wavenumbers k in any direction n, which means that A33 > 0. In view of the inequalities (3.9),
the (WP) condition can then be defined as

(WP) ⇔
⎧⎨
⎩

c55n2
x + c44n2

y ≥ 0, b2n4
x + 2b0n2

xn2
y + b4n4

y ≥ 0,

h2
22n2

x + h2
11n2

y ≥ 0,
(4.21)

augmented with the condition A33 �= 0, so that the ‘=’ in the first two inequalities in (4.21) cannot
hold simultaneously. In particular, for the first and the third inequalities to hold, the shear moduli
(c44, c55) and the microinertia parameters (h2

11, h2
22) must be non-negative. Moreover, the second

inequality requires that b2 ≥ 0 and b0 ≥ −√
b2b4.

It is worth noting that, for a constrained Cosserat material, waves can propagate while
ellipticity is lost. For example, in the special case of an extreme orthotropic couple-stress
material with b2 = 0 and b0 > 0, the condition (E) fails, but SH waves may still propagate for all
wavenumbers and in all directions, provided that c44 ≥ 0 and c55 > 0. This is in marked contrast
with the classical elasticity case, where loss of (E) would imply violation of the (WP) condition.
Indeed, it is recalled that the (E) condition in the classical elasticity case requires that c44 �= 0 and
c55 �= 0, whereas the (WP) condition implies that c44 > 0 and c55 > 0.

Finally, it remarked that, setting one or both the microinertia parameters to zero, SH
waves can still propagate. Nonetheless, microinertia plays an important role, because for large
wavenumbers, k → ∞, the phase velocity remains bounded and attains the constant value

V2
s = 3ρ−1[b2n4

x + 2b0n2
xn2

y + b4n4
y][h2

22n2
x + h2

11n2
y]−1. (4.22)

The finiteness of the phase velocity for large wavenumbers is in agreement with the results for
the classical structural models of a Rayleigh beam and a Love rod [18,19]. Note further that in the
special case where b2 = 0, so that (E) is lost at the (EI/P) boundary, the phase velocity (4.19) of a
wave propagating in the direction n = (±1, 0) becomes inversely proportional to the wavenumber
k. The latter observation suggests that the presence of microinertia will cause high-frequency
(large-wavenumber) disturbances to ‘almost’ stop propagating in this direction. In fact, in this
direction the medium behaves as a Cauchy material without Cosserat effects but with non-zero
microinertia, having a phase velocity of the form V2

s = 12ρ−1c55h
−2
22 k−2. An analogous conclusion

is reached in the case where (E) is lost at the (EC/H) boundary.

(d) Time-harmonic Green’s function
A time-harmonic concentrated body force Xz = Sδ(x)δ(y) eiωt is applied in an infinite orthotropic
constrained Cosserat material with microinertia subjected to antiplane deformation. This problem
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set-up allows one to determine the Green’s function for the out-of-plane displacement, which
is derived below by employing a Fourier transformation technique sharing analogies with the
standard technique in classical Cauchy elasticity [20]. The field equation in this case can then be
written in the following form (where the exponential term has been factored out):

Lw(x, y;ω) + Sδ(x)δ(y) = 0, (4.23)

where δ(·) denotes the Dirac delta distribution and the differential operator L is defined as

L(∂) ≡ c55∂
2
x + c44∂

2
y − 1

4
(b2∂

4
x + 2b0∂

2
x∂

2
y + b4∂

4
y ) + ρω2

(
1 − h2

22
12
∂2

x − h2
11

12
∂2

y

)
, (4.24)

with ∂n
x ≡ ∂n(·)/∂xn. An exact solution to equation (4.23) is obtained by employing the double

exponential Fourier transform. The direct and inverse double Fourier transforms of a field f (x, y)
are defined as

f ∗(k1, k2) =
∫+∞

−∞

∫+∞

−∞
f (x, y) ei(k1x+k2y) dx dy (4.25)

and

f (x, y) = 1
4π2

∫+∞

−∞

∫+∞

−∞
f ∗(k1, k2) e−i(k1x+k2y) dk1 dk2. (4.26)

Applying the direct double Fourier transform (4.25) to the field equation (4.23) and performing
the inversion yields the out-of-plane displacement in the form

w(x, y;ω) = S
4π2

∫+∞

−∞

∫+∞

−∞
1

D(k1, k2;ω)
e−i(k1x+k2y) dk1 dk2, (4.27)

where

D(k1, k2;ω) = c55k2
1 + c44k2

2 + 1
4

(b2k4
1 + 2b0k2

1k2
2 + b4k4

2)

− ρω2

(
1 + h2

22
12

k2
1 + h2

11
12

k2
2

)
(4.28)

is the characteristic polynomial, related to the A33 component of the acoustic tensor through
D = (1 + Γ33)(A33 − ρω2). Note that when the (WP) condition holds, A33 is strictly positive,
which, accordingly, implies that the characteristic polynomial D has always real roots for any
given frequency. Therefore, the (WP) condition plays the major role for finding the infinite-body
Green’s function.

In the simple case of classical elasticity, the characteristic polynomial and the out-of-plane
displacement reduce, respectively, to

Dcl(k1, k2;ω) = c55k2
1 + c44k2

2 − ρω2

and wcl(x, y;ω) = iS
4
√

c44c55
H(2)

0

⎡
⎣√ρω2

√
x2

c55
+ y2

c44

⎤
⎦ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.29)

Here H(2)
0 is the Hankel function of the second kind, which, recalling that the time dependence is

of the form exp[iωt], represents outward-propagating SH waves.
For the evaluation of the inversion integral in equation (4.27), the integrand is factored

by finding the roots of the characteristic quartic polynomial (4.28). For a fixed value of the
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transformed variable k1 (k1 ∈ R), the four roots of D can be written in the following way:

k2 = ±q1(k1), k2 = ±q2(k1), (4.30)

where

q1 ≡ q1(k1) = − i
√
α1 +Δ√

2b4
, q2 ≡ q2(k1) = − i

√
α1 −Δ√

2b4
(4.31)

with
Δ≡Δ(k1) =

√
α2

1 − 4α2,

α1 ≡ α1(k1) = 4c44 + 2b0k2
1 − 3−1ρh2

11ω
2

and α2 ≡ α2(k1) = b4(4c55k2
1 + b2k4

1 − ρω2(4 + 3−1h2
22k2

1)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.32)

Depending on the values of the transformed variable k1 and the values of the material parameters,
the roots of the characteristic polynomial in equation (4.30) can be: (i) four conjugate imaginary,
(ii) two conjugate imaginary and two real, (iii) four complex conjugates and (iv) four real roots.
Note that, in all cases, Im[q1,2] ≤ 0, ∀ k1 ∈ R. Moreover, if Im[q1,2] = 0, then Re[q1,2]> 0.

The characteristic polynomial can now be written as

D(k1, k2;ω) = b4

4
(k2

2 − q2
1)(k2

2 − q2
2). (4.33)

Applying the residue theorem in conjunction with Jordan’s lemma, the integration with respect to
k2 in equation (4.23) yields a summation of residues of poles at k2 = q1 and k2 = q2 when y> 0, or
at k2 = −q1 and k2 = −q2 when y< 0. In particular, for y> 0, the original integration path running
along the real axis is replaced by a closed contour taken in the lower k2-plane, so that the integrand
is decaying as |k2| → ∞. It should be noted that in the cases (ii) or (iv), where two or four roots
are real, respectively, the Sommerfeld radiation condition, in view also of equations (4.14) and
(4.26), dictates that the closed contour should include the positive real poles when y> 0 [18].
The following result can then be derived:

∮
C

e−ik2y

D(k1, k2;ω)
dk2 = −2π iQs(k1, y), (4.34)

with

Qs ≡ Qs(k1, y;ω) = 2

b4(q2
1 − q2

2)

(
e−iq1y

q1
− e−iq2y

q2

)
. (4.35)

Further, noting that q1(k1) and q2(k1) are even functions of their argument and by taking also into
account equation (4.34), the integral in equation (4.27) can be evaluated as

w(x, y;ω) = − iS
π

∫∞

0
Qs cos(k1x) dk1. (4.36)

The function Qs has the following asymptotic properties: (i) Qs = O(1) as |k1| → 0 and (ii) Qs → 0
as |k1| → ∞. Employing the Abel–Tauber theorem and results from the theory of generalized
functions [21], it can be readily shown that property (i) implies that the displacement w at
infinity (x2 + y2 → ∞) vanishes, as in the classical elastodynamic theory. However, property
(ii) suggests that the displacement at the point of application of the load is finite, so that the
logarithmic singularity (cf. equation (4.29)2) of the classical elastodynamic theory is eliminated
when Cosserat effects are introduced. An analogous result was obtained in the static antiplane
case for a constrained anisotropic Cosserat material [5]. Furthermore, it is noted that the function
Qs(k1, y) has square-root (integrable) singularities at the points k1 = k(m)

1 , at which α2(k(m)
1 ) = 0 and

Δ(k(m)
1 ) = 0, with k(m)

1 > 0. In the light of the above, the integral in equation (4.36) is convergent
and can be evaluated numerically taking into account its oscillatory character.

A final comment pertains to the special cases (i) b2 = 0 and (ii) b0 = −√
b2b4, where (E) is lost

at the (EI/P) or (EC/H) boundaries, respectively (cf. equations (4.17)). In these cases (see also
§4c), the (WP) condition (4.21) still holds, so that the Green’s function (4.23) maintains the same
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qualitative characteristics as in the case of a regular material far from loss of (E). In fact, it is
remarkable that, even in the case of (E) loss, the displacement remains bounded everywhere in a
constrained Cosserat solid under antiplane deformations. This finding is in marked contrast with
the classical elasticity situation, where the loss of (E) implies also loss of (WP) (i.e. the classical
acoustic tensor is no longer positive definite) and hence the Green’s function can only be defined
in the sense of distributions (cf. equation (5.1)).

In the following, the Green’s function will be used as a perturbing agent to examine the time-
harmonic mechanical properties of a series of Cosserat materials with extreme orthotropy. To
characterize this orthotropy, it is expedient to introduce the dimensionless parameters

ε = c55

c44
, β = b2

b4
, γ = b0

b4
, θ = h22

h11
and ωd = ω�√

c44/ρ
, (4.37)

where ε measures the degree of Cauchy anisotropy, (β, γ ) the degree of couple-stress anisotropy, θ
the degree of microinertia anisotropy and ωd denotes the frequency made dimensionless through
division by the classical shear-wave velocity in the y-direction (

√
c44/ρ) and multiplication by the

characteristic material length �. This length � is introduced in the constitutive equations through
the relation b4 = 4c44�

2. The ratio of the characteristic material length � to the microinertia length
h11 is defined as λ= h11/�. In all cases, it is assumed that b4 > 0 and c44 > 0. Finally, it is remarked
that Cosserat isotropy is recovered when ε = β = γ = θ = 1.

5. Dynamic folding of an elastic Cosserat continuum
A constrained Cosserat solid close to loss of ellipticity (E) exhibits extreme orthotropic properties
and is prone to folding instabilities. Following [5], folding is here revealed through a perturbation
of the material by a concentrated time-harmonic force, in the way introduced for (non-polar)
elastic prestressed materials [22,23]. During folding, the displacement gradient suffers a finite
jump across a discontinuity line, whereas the displacement field becomes locally a continuous,
piecewise-smooth, function exhibiting a cusp along the discontinuity line. It should be remarked
that the applied concentrated force (Green’s function) is to be understood as a perturbation
demonstrating that the material tends towards the state of folding, when subject to a generic
mechanical action. In this way, folding emerges as a material instability for a constrained
Cosserat anisotropic material, similarly to the situation occurring when a shear band forms in
an elastoplastic material [23]. It is worth noting that the instability phenomenon of folding cannot
be captured within the context of the classical elasticity theory.

To facilitate comparisons, an illustrative example of a ‘non-extreme’ constrained Cosserat
material is presented in figure 1. In particular, the dimensionless out-of-plane displacement
ŵ = c44w/S is plotted for an orthotropic Cosserat material without microinertia (θ = λ= 0), far
from the (E) boundary (ε = 1/4, β = 1/2, γ = 1/4), as produced by a concentrated time-harmonic
antiplane force S (acting at the origin of the axes), with frequency ωd = 1. The real and imaginary
parts of the Green’s function are shown separately (figure 1a and b, respectively). It is observed
that, in contrast with the result of the classical elastodynamic theory (cf. equation (4.29)2),
the displacement is bounded at the point of application of the concentrated force with ŵ0 ≡
ŵ(0, 0; 1) = 0.035 − 0.152i (this value provides the scale of the plots).

It is interesting to note that, for a constrained Cosserat material with null shear modulus in the
x-direction, c55 = 0 (or equivalently ε = 0), neither the (E) nor the (WP) conditions are violated.
Accordingly, no localization or any kind of instability are observed in the Cosserat material. On
the other hand, for a Cauchy material with c55 = 0, both the (E) and (WP) conditions are lost and
the Green’s function can only be interpreted in the sense of distributions. In this case, the inversion
integral in (4.27), in conjunction with equation (4.29)1, yields an out-of-plane displacement of
the form

wcl(x, y;ω) = − S sgn (y)
2ω

√
ρc44

δ(x) sin
(

y
√

c−1
44 ρω

2
)

, (5.1)

which shows a Dirac-type localization along the discontinuity line x = 0.
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Figure 1. Dynamic response of an orthotropic material without microinertia far from loss of (E). Real (a) and imaginary
(b) parts of the dimensionless out-of-plane displacement ŵ as produced by an antiplane concentrated time-harmonic force
at the dimensionless frequency ωd = 1. The material is characterized by β = 1/2, γ = 1/4 and ε = 1/4. Note that
the displacement is bounded everywhere. (Online version in colour.)

(a) Dynamics of folding patterns in a mediumwithout microinertia
In the case of an orthotropic constrained Cosserat material, folding occurs at loss of (E) either on
the (EI/P) boundary (where β = 0 and γ > 0 or, equivalently, b2 = 0 and b0 > 0) or on the (EC/H)
boundary (where γ = −√

β and β > 0 or, equivalently, b2 > 0 and b0 = −√
b2b4) [4]. In the former

case, a single fold (crease) appears along the discontinuity line x = 0, whereas in the latter case
folding emerges in a cross-type geometry, with two inclined discontinuity lines. The inclination φ
of the discontinuity lines with respect to the y-axis is given by the condition tanφ = β1/4 [4]. Note
that, in both the above cases, the Green’s function (4.27) is well defined under the hypothesis that
the (WP) condition (4.21) holds.

Figure 2 illustrates the formation of a localized single folding at the frequency ωd = 1 for a
Cosserat material with null microinertia (λ= θ = 0), characterized by β = 0, γ = 1/4 and ε = 1/4.
The displacement at the point of application of the load is ŵ0 = 0.189 − 0.295i, which provides the
scale of the plots. It is observed that only the real part of the solution exhibits folding, whereas the
imaginary part remains smooth. As shown in §5b(iii), the displacement gradient ∂w/∂x displays a
finite jump across the discontinuity line x = 0, thus showing that the solution suffers a weak shock.

Figure 3 shows the formation of localized cross folding for a Cosserat material without
microinertia (λ= θ = 0), characterized by β = 1/2, γ = −1/

√
2 and ε = 1/4. The inclination of the

discontinuity lines is φ = 40◦ and ŵ0 = 0.143 − 0.083i. Note that, as in the single folding case, only
the real part of the solution exhibits folding.

The formation of single and cross folding patterns in the constrained Cosserat material is more
clearly depicted in figure 4, where the real part of the out-of-plane dimensionless displacement is
plotted in a region close to the point of application of the concentrated force. It is observed that in
both cases the folding angle decays away from the origin.

(b) The role of microinertia
The role of microinertia is investigated in this section, as connected to the formation of folding
patterns. An inspection of equation (4.15) shows that the microinertia lengths (h11, h22) are related
to the (lower) second-order spatial derivatives of the out-of-plane displacement. In fact, for fixed



13

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160159

.........................................................

5
0

–5

5
0

–5

–5

0

5

–5

0

5

(a) (b)
x/ x/

y/

Figure 2. Dynamic response of an extreme orthotropicmaterial withoutmicroinertia at the (EI/P) boundary for loss of (E). Real
(a) and imaginary (b) parts of the dimensionless out-of-plane displacement ŵ as produced by an antiplane concentrated time-
harmonic force at the dimensionless frequencyωd = 1. The material is characterized byβ = 0, γ = 1/4 and ε = 1/4. Note
that the real part (a) of the displacement ŵ exhibits single folding along the discontinuity line x = 0. (Online version in colour.)
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Figure 3. Dynamic response of an extreme orthotropicmaterial withoutmicroinertia at the (EC/H) boundary for loss of (E). Real
(a) and imaginary (b) parts of the dimensionless out-of-plane displacement ŵ as produced by an antiplane concentrated time-
harmonic force at thedimensionless frequencyωd = 1. Thematerial is characterizedbyβ = 1/2,γ = −1/

√
2 andε = 1/4.

Note that the real part (a) of the displacement ŵ exhibits a cross folding along two discontinuity lines inclined atφ = 40◦ with
respect to the y-axis. (Online version in colour.)

values of the frequency ω, the terms f44 and f55 may change sign according to the magnitude of the
microinertia lengths. As will be subsequently shown, the nature of the solution depends indeed
upon the sign of these quantities. In what follows, the cases of single and cross folding will be
treated separately.
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Figure 4. Details of figures 3a and 4a showing the single (a) and cross (b) folding patterns emerging in extreme orthotropic
constrained Cosserat continua with null microinertia near loss of (E). (Online version in colour.)

(i) Single folding

For single folding emerging at the (EI/P) boundary of loss of (E), two special cases are considered
highlighting the effects of microinertia, namely (i) f44 > 0 and f55 > 0, and (ii) f44 > 0 and f55 < 0.
In particular, figure 5 shows the behaviour of the dimensionless out-of-plane displacement ŵ for a
concentrated time-harmonic force placed at ωd = 1. The extreme orthotropic Cosserat material is
characterized by parameters β = 0, γ = 1/4, ε = 1/4, λ= 1 and (a) θ = 0.9θ∗ (so that f44 = 0.916c44,
f55 = 0.047c44) and (b) θ = 1.1θ∗ (so that f44 = 0.916c44, f55 = −0.052c44). Note that the special value
θ∗ = √

3 corresponds to the case where f55 = 0 at ωd = 1.
It is observed from figure 5a that, as the microinertia parameter h55 increases, the wavelength

of the disturbance decreases significantly when compared with a Cosserat medium without
microinertia (figure 2). Moreover, the wavefronts now become parallel to the discontinuity
line x = 0. Further increase of the microinertia h55 results in f55 < 0 and the response to
the perturbation changes qualitatively. Indeed, it is shown in figure 5b that the disturbance
corresponds to a mode of rapidly decaying oscillations in the direction normal to the discontinuity
line (n = (±1, 0)). As pointed out in §4b, the change of sign in the term f55 corresponds to
passing from a tensile to a compressive prestress in the y-direction in an orthotropic plate with
microinertia. On the other hand, in the direction parallel to the discontinuity line, the disturbance
oscillates with a slowly decaying amplitude (see also figure 7b, blue curve) confined in a small
zone |x|< �, giving rise to a ‘folding wave’ (see the discussion below). It is worth noting that,
different from the case in figure 5a, both the real and imaginary parts of the solution evidence
folding.

(ii) Cross folding

For cross folding occurring at the (EC/H) boundary of loss of (E), two particular cases are
considered, namely (i) f44 > 0 and f55 > 0, and (ii) f44 < 0 and f55 < 0. Figure 6 shows the behaviour
of dimensionless out-of-plane displacement ŵ for a concentrated time-harmonic force at ωd = 1.
The orthotropic Cosserat material is characterized by the parameters β = 1/4, γ = −1/

√
2, ε = 1/4,

θ = 0.5 and (a) λ= 0.9λ∗ (f44 = 0.19c44, f55 = 0.047c44) and (b) λ= 1.1λ∗ (f44 = −0.21c44, f55 =
−0.052c44). Note that the special value λ∗ = 2

√
3 corresponds to f44 = f55 = 0 at ωd = 1.

As in the case of single folding, it is observed that the wavelength of the disturbance decreases
significantly as λ→ λ∗− (approaching the limit from below) compared with the respective result
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Figure 5. Dynamic response of an extreme orthotropic material with microinertia at the (EI/P) boundary for loss of (E). Real
(left) and imaginary (right) parts of the dimensionless out-of-plane displacement ŵ as produced by an antiplane concentrated
time-harmonic force at the dimensionless frequency ωd = 1. The material is characterized by β = 0, γ = 1/4, ε = 1/4,
λ= 1 and (a) θ = 0.9θ∗ and (b) θ = 1.1θ∗. Note that for case (a) the disturbance degenerates into waves propagating only
parallel to the folding line (x = 0), whereas for case (b) the disturbance rapidly decays in the x-direction, but does not along
the discontinuity line x = 0, thus showing an example of a folding wave. (Online version in colour.)

for a Cosserat medium with null microinertia (figure 3). In addition, the disturbance is produced
by the superposition of two wavefronts parallel to the discontinuity lines inclined at φ = 40◦,
which propagate with decreasing amplitude. For λ> λ∗, the disturbance becomes confined in a
zone close to the lines of discontinuity and decays quickly away from them. In this case, both the
real and imaginary parts of the solution display folding.

(iii) Folding waves

To investigate further the nature of folding instabilities and the role of microinertia, the conditions
under which the formation of a discontinuity line becomes possible at the (EI/P) boundary of
ellipticity loss are now studied (the general conditions for a three-dimensional anisotropic body
were obtained in [4]) with a view towards examining the possibility of a propagating folding
wave (as shown in figure 5b),
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Figure 6. Dynamic response of an extreme orthotropic material with microinertia at the (EC/H) boundary for loss of (E). Real
(left) and imaginary (right) parts of the dimensionless out-of-plane displacement ŵ as produced by an antiplane concentrated
time-harmonic force at frequencyωd = 1. Thematerial is characterized by the parametersβ = 1/2,γ = −1/

√
2,ε = 1/4,

θ = 1/2 and (a)λ= 0.9λ∗ and (b)λ= 1.1λ∗. (Online version in colour.)

From equilibrium considerations and imposing continuity for the out-of-plane displacement
across a surface defined by the unit normal n = (±1, 0), the following relations are derived:

[[w]] = 0, [[P(n)
z ]] = 0, [[R(n)

y ]] = 0, (5.2)

where [[ ]] denotes the jump of the enclosed quantity across the relevant surface. The expression
for the tractions in the antiplane case considered here can be derived from the general definitions
(2.6). Note that, employing Hadamard’s lemma, equation (5.2)1 implies [[∂yw]] = ∂y[[w]] = 0.

Using the kinematical conditions (4.2) in conjunction with the constitutive equations (4.3) and
(4.4), and bearing in mind that b2 = 0 (b0 > 0) for the (EI/P) case, equation (5.2)3 is identically
satisfied, while

[[P(n)
z ]] = 0 ⇒ (2b0 + b3)

4
d2g(1)

3
dy2 − f55g(1)

3 = 0, (5.3)

where the discontinuity vector g(1) = (0, 0, g(1)
3 ) with g(1)

3 (y) ≡ [[∂xw]] defines the unknown jump
in the normal (to the discontinuity line x = 0) derivative of the out-of-plane displacement.
The folding angle ψ(y) can then be defined through the equation ψ(y) = π − g(1)

3 (y).
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Figure 7. (a) Variation of the real part of the normalized jump g(1)3 (y) along the discontinuity line. The jump becomes
exponentially decaying for θ < θ∗, whereas for θ > θ∗ it propagates along the discontinuity line forming a folding wave.
(b) Variation of the real part of the dimensionless displacement along the discontinuity line. (Online version in colour.)

Assuming that the (WP) condition (4.21) holds, the second-order ordinary differential equation
(5.3) admits the general solution

g(1)
3 (y) = C e−(2

√
f55/

√
2b0+b3)|y|, (5.4)

where C is a non-zero constant.
The above result shows that, when (E) is lost but the (WP) condition still holds, a non-zero

discontinuity vector g(1)
3 becomes possible. It is apparent from (5.4) that the behaviour of the jump

g(1)
3 (y) and of the folding angle ψ(y) depend on the sign of the term f55. In particular, for f55 > 0,

the jump becomes exponentially decaying along the discontinuity line and ψ(y) → π as |y| → ∞
(corresponding to the absence of folding). An analogous situation was encountered in the quasi-
static case [5]. However, for f55 < 0, the jump is propagating without any decay, which implies that
a folding wave propagates along the discontinuity line x = 0.

It is worth noting that the expression (5.4), describing the variation of g(1)
3 (y), involves the

Cosserat modulus b3 (the secondary bending stiffness). However, this bending stiffness is not
involved in the infinite-body Green’s function, equation (4.27), which depends on the parameter
b0 (with b0 = b1 − b3). In fact, although the relations for continuity of tractions (5.2) hold for
any value of the Cosserat modulus b3, it is apparent from (4.6)4 that, in order for (PD)B and
(E) to be lost simultaneously, the parameter b3 must be set to zero, b3 = 0, so that the emerging
discontinuity line becomes admissible (see also [5]).

Additional insight into the circumstances just described is provided by figure 7, where (a)
the real part of the normalized jump g(1)

3 and (b) the real part of the dimensionless out-of-plane
displacement are depicted along the folding line x = 0 for a Cosserat material at the (EI/P)
boundary for loss of (E) with β = 0, γ = 1/4, ε = 1/4 and λ= 1. It is observed that, when the
microinertia is null (dashed curve) or when θ < θ∗ (red curves in figure 7a), the jump, according to
equation (5.4), is a real-valued exponentially decaying function of y. On the other hand, for θ > θ∗

(blue curves in figure 7a), g(1)
3 (y) propagates along the discontinuity line with a constant amplitude

which depends on the parameter θ . In all cases, the out-of-plane displacement decreases away
from the origin (figure 7b). It is interesting to note that, for θ > θ∗, the pulse is distorted during
propagation, implying that the disturbance becomes highly dispersive (figure 7b, blue curve).

Finally, it should be noted that the above results and observations can be readily extended
to the case where (E) is lost at the (EC/H) boundary in the same spirit as [5].
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6. Conclusion
The conditions for wave propagation have been explored for orthotropic constrained Cosserat
elastic solids in the presence of microinertia. The acoustic tensor and the conditions for loss
of ellipticity have been derived, together with a new infinite-body Green’s function for time-
harmonic vibrations. Employed as an agent perturbing an infinite medium, the Green’s function
has revealed the interplay between dynamics and folding mechanisms in Cosserat materials. In
particular, the effect of microinertia has been proved to be connected with the propagation of
special disturbances, called ‘folding waves’.
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