
The experimental evidence clearly shows the existence of secondary equilibrium paths for a 

thin cylinder subjected to axial tension. The compressive hoop stresses induced by the 

reduction of the radius lead eventually to the formation of axisymmetric dimples (Fig. 1A). If 

the load is further increased, the dimples grow and merge together (Fig. 1B).

To analitically model the phenomenon, the hollow cylinder of Fig. 2 has been considered. 

The problem has been formulated within a Lagrangian continuum framework, where the 

incremental equilibrium condition reads (cp. [1,2]):

(1)

and     is the increment of the first Piola-Kirchhoff stress tensor. Traction-free internal and 

external lateral surfaces have been considered as suitable boundary conditions, while perfect 

contact with rigid surfaces has been modeled for the upper and lower faces. Expressing the 

stress components as functions of the axial stretch λ  and material constants (assumed the �
material to be hyperelastic and isotropic about the axis of symmetry), leads to the classical 

bifurcation condition:

(2)

where M represents the matrix of the coefficients of the homogeneous system of equations 

governing the problem, which depends on material parameters as well as on the buckling 

parameters η=kπ/L (axial wave number, k=1,2,...) and n (circumferential wave number, 

n=0,1,2,...). The wave numbers η and n fully define the bifurcation mode.
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Results for J2-deformation theory material
For J2-deformation theory materials, the constitutive equation for uniaxial tension (or 

compression) reads:

(3)

where λ  is the axial stretch, while the stiffness parameter K has been chosen equal to 0.1. �
Hence, the stability condition (2) depends only on λ  and the wave numbers n and η.�

Fig. 3 shows the critical stretch corresponding to instability for a particular value of the 

hardening exponent N (N=0.1) and for a specific ratio ρ=R /R  (ρ=1.05, i.e. a very thin shell). ᵉ�ᵗ ��ᵗ
The results are expressed in terms of the dimensionless quantity ηR : the smaller ηR  the ��ᵗ ��ᵗ
more slender the cylinder. Each curve was obtained for a different value of n (circumferential 

wave number). Finally, their lower envelope has been calculated, representing the possible 

combination of critical conditions for the instability of the shell. The curves are restricted to 

the interval 1.0 < λ  < 2.234: the lower bound reflects the fact that the cylinder is under tension, �
while the upper bound represents the value above which ellipticity is lost. Ellipticity loss 

corresponds to the development of shear bands, a phenomenon that we are not investigating.

Fig. 4 extends the results to different values of hardening exponent N and ratio ρ. To  simplify 

the interpretation of the diagram, curves sharing the same ratio ρ have been depicted with 

the same color in order to highlight the role of the hardening exponent N. For a fixed value of 

ρ, to a higher value of N corresponds a higher critical stretch. On the contrary, for a fixed 

value of N, high critical stretches are reached for very thick cylinders.

Formulation of the problem
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Fig. 4: Lower envelopes of the critical stretch for K=0.1, different 

values of the hardening exponent N and different ratios ρ as a 

function of ηR  (η=kπ/L, k=1,2,3,..).��ᵗ

Fig. 3: Critical stretch for K=0.1, N=0.1 and ρ=1.05 for different 

values of circumferential wave numbers n as a function of  ηR  ��ᵗ
(η=kπ/L, k=1,2,3,..) and lower envelope.
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Fig. 2: Geometry of the system.
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Fig. 1: Buckling under tension.

A) Strain localisation and dimple 

initiation and B) dimple propagation. 
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