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Abstract. The existence of torsional and SH surface waves in a half-space of a homogeneous and 

isotropic material is shown to be possible in the context of the complete Toupin-Mindlin theory of 

gradient elasticity. This finding is in marked contrast with the well-known result of the classical 

theory, where such waves do not exist in a homogeneous (isotropic or anisotropic) half-space. In 

the context of the classical theory, this weakness is usually circumvented by modeling the half-

space as a layered structure or as having non-homogeneous properties. On the other hand, 

employing a simplified version of gradient elasticity (including only one microstructural 

parameter and an additional surface-energy term), Vardoulakis and Georgiadis (1997), and 

Georgiadis et al. (2000), showed that such surface waves may exist in a homogeneous half-space 

only if a certain type of gradient anisotropy is included in the formulation. On the contrary, in the 

present work, we prove that the complete Toupin-Mindlin theory of isotropic gradient elasticity 

(with five microstructural parameters) is capable of predicting torsional and SH surface waves in a 

purely isotropic and homogeneous material. In fact, it is shown that torsional and SH surface 

waves are dispersive and can propagate at any frequency (i.e. no cut-off frequencies appear). The 

character of the dispersion (either normal or anomalous) depends strongly upon the 

microstructural characteristics. 

 

 

Dedicated to Emeritus Professor G. Tsamasphyros (National Technical University of Athens) on 

the occasion of his 70
th

 birthday. 

 

* Corresponding author: Tel.: +39 0461 282594; Fax: +39 0461 282599. 

   E-mail address: p.gourgiotis@unitn.it (Panos A. Gourgiotis) 

*Revised Manuscript (Unmarked)
Click here to view linked References

http://ees.elsevier.com/ijss/viewRCResults.aspx?pdf=1&docID=12889&rev=1&fileID=486423&msid={A11FB663-1907-464F-8BAE-2DDE39AC25B3}


 

 

2 

Keywords:  Surface waves, Torsional waves, SH waves, Microstructure, Granular Media, 

Isotropic and Homogeneous Materials, Gradient Elasticity, Micro-inertia. 

 

 

1.  Introduction 

It is well known that the classical theory of elasticity fails to predict the existence of 

torsional and antiplane SH (horizontally polarized) surface waves in a homogeneous (isotropic or 

anisotropic) half-space with a free surface (Rayleigh, 1885). On the contrary, both plane 

stress/strain and axisymmetric surface waves of the Rayleigh type are predicted by the classical 

theory. Moreover, surface waves of the shear type (i.e. torsional and SH) are known to exist in 

nature. Indeed, this type of waves has been observed in the context of both non-destructive testing 

(Kraut, 1971) and seismology (Bullen and Bolt, 1985). In fact, torsional and SH surface waves are 

the most destructive waves in an earthquake and they can propagate for very long distances 

without much loss of energy.  

As was pointed out by Vardoulakis and Georgiadis (1997), the situation concerning the non-

existence of SH and torsional surface waves in a homogeneous half-space, within the context of 

classical linear elasticity, is translated mathematically to the violation of the pertinent 

complementing (or consistency) condition in a semi-infinite domain for the system consisting of 

the scalar Helmholtz partial differential equation (governing antiplane and torsional motions), a 

zero Neumann boundary condition for the traction-free surface, and a finiteness condition at 

infinity. Thompson (1969), showed that the complementing condition implies that all surface 

waves propagate with non-zero velocity. This condition is obviously satisfied when both 

dilatational and shear deformations are allowed to take place in the half-space, and thus, Rayleigh 

surface waves are predicted by the classical theory in the cases of plane stress/strain and general 

axisymmetric motions. However, the complementing condition is not satisfied in the cases of 

torsional and antiplane shear (SH) motions, and thus, the corresponding types of waves cannot be 

predicted by the conventional theory.  

In the context of the classical theory of elasticity this drawback is circumvented usually by 

modeling the half-space as a layered structure (Love waves) or as having non-homogeneous 

properties. Regarding the existence and propagation of SH surface waves, a thorough review up to 

the late 1980s was given by Maugin (1988), whereas an interesting more recent study on the 

propagation of antiplane SH surface waves (Bleustein – Gulyaev) in a functionally graded material 

is due to Collet et al. (2006). In addition, Shuvalov et al. (2009) investigated the propagation of 
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SH surface waves in an anisotropic periodic half-spaces in which the material properties within 

each period are arbitrary. Achenbach and Balogun (2010) examined a purely elastic half-space 

whose shear modulus and mass density depend arbitrarily on the depth and gave a general solution 

at high frequencies. In the same context, Ting (2010) investigated the propagation of SH surface 

waves in a monoclinic half-space with variable density and elastic moduli, and obtained an 

asymptotic solution for large wavenumbers. Finally, Du and Su (2013) investigated the 

propagation of SH surface waves in a stochastically homogeneous half-space (with random 

density in the depth direction) and found interesting dispersion and attenuation properties. On the 

other hand, regarding the propagation of torsional surface waves the literature is rather limited. 

Mention should be made of the early work by Meissner (1921), who showed that in an 

inhomogeneous elastic half-space with quadratic variation of shear modulus and density varying 

linearly with depth, torsional surface waves do exist. Later, Vardoulakis (1984) showed that the 

same is true for a Gibson half-space, i.e. for a half-space with shear modulus varying linearly with 

depth and with constant density. The possibility of surface torsional waves in an elastic half-space 

with void pores has been examined by Dey et al. (1993), where it was shown that such a half-

space can allow two types of torsional surface waves, both being dispersive. More recently, 

Chattaraj et al. (2011) studied the propagation of torsional surface waves in a poroelastic layer 

lying over an inhomogeneous elastic half-space under initial stress.  

In the context of gradient theories, SH and torsional surface waves have been examined by 

Vardoulakis and Georgiadis (1997), and Georgiadis et al. (2000), respectively. In these works, a 

simplified version of gradient elasticity with surface energy was employed involving two 

additional material constants (besides the standard two Lamé moduli): the so-called gradient 

coefficient c  and a material parameter b  accounting for gradient anisotropy. It was shown that 

including surface-energy terms (i.e. gradient anisotropy) is necessary for predicting SH and 

torsional surface waves. Indeed, the standard simplified version of gradient isotropic elasticity (i.e. 

without surface energy), utilizing a single gradient material constant, although greatly facilitates 

the analysis of boundary value problems (see e.g. Georgiadis et al., 2004; Gourgiotis and 

Georgiadis, 2009; Gao and Ma, 2009; Giannakopoulos et al. (2012) and references therein), is not 

capable of predicting these types of surface waves in a homogeneous and isotropic half-space. An 

analogous situation is encountered in the nonlocal integral-type elasticity theory, which is also 

incapable of explaining the occurrence of such waves (Eringen, 1972). 

In the present work, we employ the complete Toupin-Mindlin theory of gradient elasticity 

with micro-inertia (Toupin, 1962; Mindlin, 1964) and show that this theory is capable of 
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predicting SH and torsional surface waves in a purely isotropic and homogeneous half-space. 

Indeed, contrary to the works by Vardoulakis and Georgiadis (1997), and Georgiadis et al. (2000), 

where a simplified version of the theory was used, neither anisotropy in the material response nor 

any surface-energy term is needed in the formulation, for the prediction of such waves. In the 

complete Toupin-Mindlin theory, the full constitutive relations in the isotropic case involve five 

microstructural parameters (these constants are additional to the standard Lamé constants to 

characterize the material response), providing thus a more detailed modeling of microstructured 

materials as compared to the simplified version (including only one additional material parameter) 

or other generalized continuum theories - like the standard couple-stress theory - employed in the 

past for examining wave propagation problems (e.g. Georgiadis and Velgaki, 2003; Georgiadis et 

al., 2004; Vavva et al., 2009; Gourgiotis et al., 2013; Rosi et al., 2014; Piccolroaz and Movchan, 

2014; Morini et al., 2014). In the present formulation, a micro-inertia term is also included, since 

previous experience with gradient analyses of surface waves showed that this term is indeed 

important at high frequencies (Georgiadis et al., 2004; Filopoulos et al. 2010; Gourgiotis et al., 

2013). The inclusion of the micro-inertia term leads to an explicit appearance of the intrinsic 

material length h2 , which, in turn, can be associated with the material microstructure. Recently, 

Polyzos and Fotiadis (2012), using a simple one-dimensional lattice model of one-neighbor 

interaction reproduced the field equations of Toupin-Mindlin theory and correlated the internal 

lengths parameters with the actual microstructure of the material. Moreover, Shodja et al. (2013) 

utilizing ab initio DFT calculations evaluated the characteristic material lengths of the Toupin-

Mindlin theory for several fcc and bcc metal crystals. 

The contents of our paper are as follows: In Section 2, we summarize the basic dynamical 

equations of the Form II of Toupin-Mindlin gradient theory and examine the effects of strain-

gradients in the propagation of plane waves in an infinite medium. It is worth noting that, unlike 

the case of classical theory, in gradient elasticity both dilatational and distortional waves become 

dispersive. In addition, the conditions for positive definiteness of the strain-energy density are 

provided in the context of the complete isotropic Toupin-Mindlin theory. Next, in Section 3, we 

investigate the propagation of torsional surface waves in a homogeneous and isotropic gradient 

half-space. The solution is derived with the use of Hankel transforms. A parametric analysis of the 

pertinent dispersion equation reveals the conditions for the existence of such waves. In Section 4, 

free time-harmonic SH motions are considered for a homogeneous and isotropic gradient half-

space. The analysis is based on the Fourier transform and on a parametric study of the resulting 

dispersion equation. Numerical results and asymptotic estimates regarding the dispersion 
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characteristics of torsional and SH waves are presented in Section 5. The dependence of the phase 

and group velocities upon the wavenumber and the microstructural characteristics of the material 

is studied in detail. It is shown that, for a material with a positive definite strain-energy density, 

torsional and SH surface waves can propagate at any frequency (i.e. no cut-off frequencies 

appear). Moreover, the character of the dispersion (either normal or anomalous) depends upon the 

size of the material microstructure. 

Our results can be useful in wave-propagation studies (e.g. in relation with non-destructive 

testing and evaluation) for granular materials such as ceramics, composites, foams, masonry 

structures, bone tissues, glassy and semi-crystalline polymers, where their macroscopic behavior is 

strongly influenced by the microstructural characteristic lengths especially at high frequencies or 

in the presence of large stress (or strain) gradients. 

 

 

2.  Fundamentals of strain gradient elastodynamics 

In this Section, we briefly present the basic elastodynamic equations of the isotropic Toupin-

Mindlin theory of strain-gradient elasticity. A detailed presentation of the theory including inertial 

and micro-inertial effects can be found in the fundamental paper of Mindlin (1964) and the recent 

papers by Georgiadis et al. (2004), and Gourgiotis et al. (2013). According to this theory, each 

material particle has three degrees of freedom (the displacement components – just as in the 

classical theory) and the micro-density does not differ from the macro-density. Also, first-order 

gradient terms of strain and velocity, in addition to the classical (i.e. zero-order gradient) terms, 

are included in the strain and the kinetic energy densities, respectively.  

For a continuum with microstructure fully composed of sub-particles (micro-media) having 

the form of unit cells (cubes), the following expression of the kinetic-energy density T  is obtained 

with respect to a Cartesian coordinate system 321 xxOx  (Mindlin, 1964) 

 

  21 1

2 6
p p p q p qT u u h u u      , (1) 

 

where   is the mass density, 2h  is the size of the cube edges of the unit cell, pu  is the 

displacement vector,    p px    , the superposed dot denotes time derivative, and the Latin 

indices span the range (1,2,3) (indicial notation and summation convention is used throughout). 
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The second term in the RHS of Eq. (1), involving the velocity gradients, represents the micro-

inertia of the continuum. This term, which is not encountered within classical continuum 

mechanics, reflects the more detailed description of motion in the present theory. 

Also, the strain-energy density function for a linear and isotropic continuum assumes the 

following form (Mindlin, 1964) 

 

1 2

1

2
pp qq pq pq ppj jqq jpp jqqW a a            

                                                         3 4 5ppj qqj jpq jpq jpq qpja a a         , (2) 

 

where   1 2pq p q q p qpu u      is the linear strain tensor, and rpq rqp r pq      is the strain 

gradient (third order) tensor. This is Form II in Mindlin‟s (1964) paper. In addition,  ,   are the 

standard Lamé constants and qa  ( 1,...,5q  ) are the five additional material constants having 

dimensions of [force] . It is worth noting that the frequently used simplified version of gradient 

elasticity is obtained from Eq. (2) by setting: 2 2a c , 4a c , and 1 3 5 0a a a    (see e.g. 

Georgiadis et al., 2004; Gao and Ma, 2009; Vavva et al., 2009).  

In view of Eq. (2), the constitutive equations become 

 

2pq pq jj pq

pq

W
   




  


 , (3) 

 1 2

1
2 2

2( )rpq rp qjj pq jjr qr pjj pq rjj

r pq

W
m a a       




    
 

  

                                                3 4 52rp jjq rq jjp rpq qrp pqra a a            , (4) 

 

where pq  is the Kronecker delta, pq  is the monopolar stress tensor, and rpqm  is the dipolar (or 

double) stress tensor (a third-rank tensor) expressed in dimensions of 
1]length][force[ 
. The 

dipolar stress tensor follows from the notion of dipolar forces, which are anti-parallel forces acting 

between the micro-media contained in the continuum with microstructure. According to Eqs. (3) 

and (4), the following symmetries for the monopolar and dipolar stress tensors are noticed: 

qppq    and rqprpq mm  .  
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The equations of motion and the pertinent boundary conditions can be obtained from 

Hamilton‟s principle and variational considerations using Eqs. (1) and (2). Indeed, assuming the 

absence of body forces, the variational form of Hamilton‟s principle becomes  

 

  
22 2

1 1 1

( ) ( )
tt t

n n

q qr q rqV V S St t t

W dV dt T dV dt t dS T dS dtu u        
       , (5) 

 

where V  is the region occupied by the body, and S  is the surface of the body. The symbol   

denotes weak variations and it acts on the quantity existing on its right. Also, 1t  and 2t  are two 

arbitrary instants of time for which the variations qu  are zero at all points of the body. In 

addition, 
)(n

qt  is the true monopolar traction, 
)(n

pqT  is the true dipolar traction, and pn  is the outward 

unit normal to the boundary along a Section inside the body or along the surface of it (Bleustein, 

1967). Examples of the dipolar tractions 
)(n

pqT  can be found in the work by Georgiadis and 

Anagnostou (2008).  

The local form of the equations of motion and the traction boundary conditions along a 

smooth boundary assume then the following form (Mindlin, 1964) 

 

   
2

3
p pq r rpq q pp q

h
m u u


          in    V  , (6) 

       
2

( )

3

n

q p pq r rpq p r rpq j j r p rpq p p q

h
P n m D n m D n n n m n u


          on    S  , (7) 

rpqpr

n

q mnnR )(
    on    S  , (8) 

 

where      DnD ppp   is the surface gradient operator and    ppnD   is the normal 

gradient operator. The auxiliary force traction 
( )n

qP  and the auxiliary double force traction 
( )n

qR  are 

related with the true force traction 
)(n

qt  and the true double force traction 
)(n

pqT  through 

  )()()()( n

pqp

n

pqprr

n

q

n

q TDTnnDtP   and 
)()( n

pqp

n

q TnR   (Bleustein, 1967). It should be noted that in 

the case in which edges appear along the boundary, an additional boundary condition should also 

be imposed (Mindlin, 1964). Moreover, the pertinent kinematical boundary conditions of the 
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theory were derived by Mindlin (1964) (see also, Grentzelou and Georgiadis, 2008), but are 

omitted here since these are not relevant to our specific problem.  

The following point now deserves attention: In the general inertial case, the existence of last 

term in the LHS of (7) violates the assumption of objective tractions. However, in the quasi-static 

case and also in the time-harmonic inertial case considered here this difficulty is eliminated. 

Moreover, as Jaunzemis (1967) pointed out, the difficulty with satisfying objectivity in multipolar 

theories can circumvented by introducing an effective body force as the difference between the 

standard body force and the micro-inertia term, and by further assuming that this effective body 

force is objective, although its constituents are not (see also Georgiadis et al., 2004). 

In summary, Equations (3), (4) and (6)-(8) are the governing equations for the isotropic 

linear gradient elastodynamic theory. Combining Eqs. (3) and (4) with (6), one obtains the 

equations of motion in terms of displacement components (Mindlin, 1964) 

 

      2 2 2 2 2

1 22 1 1 I              u u u u  , (9) 

 

where  2  is the Laplace operator, 
2 3I h  is the micro-inertia coefficient, and  2 2

1 2, 0  

are the characteristic lengths, defined as  

 

 

 
1 2 3 4 52

1

2
0

2

a a a a a

 

   
 


 ,    

 3 4 52

2

2
0

2

a a a



 
   . (10) 

 

In the limit  1 2, 0  and 0h , the Navier-Cauchy equations of classical dynamic linear 

isotropic elasticity are recovered from Eqs. (9). The fact that the gradient coefficients  2 2

1 2,  

multiply the higher-order term reveals the singular-perturbation character of the gradient theory 

and the emergence of associated boundary-layer effects.  

Next, by taking the divergence and curl of Eqs. (9), we obtain the relations governing the 

propagation of dilatation and rotation, respectively 

 

   
2

2 2 2 2 2

11 1
3

p

h
c

 
        

 
u u   , (11) 
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   
2

2 2 2 2 2

21 1
3

s

h
c

 
        

 
u u   , (12) 

 

where  
1 2

2pc        and  
1 2

sc    are the velocities of the pressure (P) and shear (S) 

waves, respectively, in the classical (i.e. non-gradient) elasticity theory. Moreover, we note that 

unlike the corresponding case of classical elastodynamics, the PDEs (11) and (12) are of the fourth 

order. This implies that wave signals emitted from a disturbance point propagate at different 

velocities. The last statement can easily be supported by considering time-harmonic plane wave 

solutions and determining the pertinent dispersion relations. To this end, we consider a plane wave 

solution in the following form: 

 

  expA i t    u d n x   , (13) 

 

where A  denotes the amplitude,  ,d n  are unit vectors defining the directions of motion and 

propagation, respectively, x  is the position vector,   is the wavenumber,   is the circular 

frequency of the plane wave (taken to be a real quantity), V    is the phase velocity, and 

2 = 1i  . Then, on substituting the solution (13) into Eqs. (11) and (12), we obtain the following 

relations for the phase velocities of the pressure and shear waves in gradient elasticity 

 

 
1 2

2
1 2

2 2 2

11 1
3

p p

h
V c  



 
   

 
,     

1 2
2

1 2
2 2 2

21 1
3

s s

h
V c  



 
   

 
 . (14) 

 

Equations (14) show that the propagation velocities of these waves depend on the respective 

wavenumber. Hence, both waves are dispersive in dipolar gradient elasticity. This finding is in 

contrast with the result of the standard couple-stress elasticity, where only the shear waves become 

dispersive (Toupin, 1962). A recent interesting investigation regarding the capability of various 

gradient and nonlocal type theories to predict the dispersive behavior of traveling waves in 

comparison with the Born–Karman model of lattice dynamics was given by Fafalis et al. (2012). 
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To investigate further upon the nature of the dispersion relations in gradient elasticity, we 

consider the group velocity 
g

V d d   at which the energy propagates in a dispersive medium 

(Achenbach, 1984). In particular, according to Eqs. (14), we obtain 

 

 
3 2

2 2
1 2

2 2 2 2 2

1 11 1
3 3

g
p p p

h h
V V c   


   

       
   

 , (15) 

 
3 2

2 2
1 2

2 2 2 2 2

2 21 1
3 3

g
s s s

h h
V V c   


   

       
   

 . (16) 

 

The following three cases are then distinguished: (i) For 
2 2

1,2 3h , Eqs. (15) and (16) imply that 

, ,
g
p s p sV V  and thus the dispersion is normal. (ii) For 

2 2

1,2 3h , we have , ,
g
p s p sV V  indicating 

that the dispersion is anomalous. (iii) For 
2 2

1,2 3h  or  1 2, , 0h   (i.e. no material 

microstructure), the wave velocities degenerate into the non-dispersive velocities of classical 

elastodynamics.  

Finally, the restriction of positive definiteness of the strain energy density W  requires the 

following inequalities for the material constants (a detailed derivation is provided in Appendix A)  

 

 3 2 0    ,    0   , (17) 

4 0a   ,    4 5 0a a   ,    4 52 0a a   , 

1 0b   ,    2 0b   ,     
2

1 2 1 2 32 5 4 2 0b b a a a     ,    3 4 510 6 0a a a    , (18)  

 

where 

 

1 1 2 3 4 54 8 2 6 3b a a a a a          and       2 1 2 3 4 55 3b a a a a a      . (19) 
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3.  Torsional surface waves in a gradient elastic half-space 

3.1.  Governing equations for time-harmonic torsional motions 

Attention now is directed to the torsional dynamic motions in a gradient-elastic half-space. 

A torsional motion is one that involves only the circumferential displacement, which is 

independent of the azimuthal angle. With respect to a system of cylindrical coordinates  , ,r z  

having unit base vectors  , ,r ze e e , the half-space occupies the region  0 , 0r z     (see Fig. 

1). 

 

 

 

 

Fig.1: An elastic half-space in a state of torsional motions. 

 

 

In this case, the displacement field assumes the following general form 

 

0r zu u   ,     , , 0u u r z t    , (20) 

 

whereas, the non-vanishing components of the strain and strain-gradient tensors are 

 

1

2
r

u u

r r


 
  

 
 ,    

1

2
z

u

z






 , (21) 
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r
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








 ,    

2 r
rr

r


 


     ,    z

zz
z











 , 

z
r z

r











 ,    r

zr
z











 ,    z

rz
r





    . (22) 

 

Further, in view of Eqs. (3), (4) and (22) the monopolar and dipolar stresses become  

 

2r r    ,    2z z    , (23) 

 

   3 4 5 5 32rr rr rr zzm a a a a a              , 

    1 3 4 52 2rr zzm a a a a              , 

 1 4 52 2rr rr zz rr rrm a a a               , 

   3 4 5 32zz zz rrm a a a a           , 

 1 52zz rr zz zzm a a            , 

 4 52r z r z zr rzm a a         , 

 4 52rz rz zr r zm a a         , 

 4 52zr zr r z rzm a a         . (24) 

 

Since in the torsional case only shear motions exist, omitting the terms accounted for dilatational 

deformation in the equations of motion (Eq. (9)), we obtain 

 

2

2 2 2 2

2 2 2 2

1 1 1

s

I u
u u

r r r c

      
              
       

 , (25) 

 

where 2 , and        2 2 1 2

r r zr       is the Laplace operator in cylindrical polar 

coordinates depending now only upon the variables  ,r z . In the absence of gradient effects (i.e. 

when 0  and 0h  ), Eq. (25) degenerates into the standard wave equation of the second order 

governing torsional motions. It is worth noting that the dispersive character of torsional waves in 

gradient elasticity can be immediately inferred by the structure of the differential operator in (25).  
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In the sequel, a steady state is considered where, as is well-known (see e.g. Achenbach, 

1984), the displacement varies in the following time-harmonic manner 

 

   , , , e i tu r z t u r z    . (26) 

 

The above „decomposition‟ reduces Eq. (25) to the form 

 

2

2 2 2 2

2 2

1 1
0u g u k u

r r

   
         
   

 , (27) 

 

where   sk k c    and    21g g I     . In what follows, as is standard in this type 

of problems, it is implied that all field quantities are to be multiplied by the time-harmonic factor 

exp( )i t  and that the real part of the resulting expression is to be taken.  

The pertinent boundary conditions for a traction-free half-space follow from Eqs. (6). For a 

boundary defined by the plane 0z   with  0, 0, 1 n , they assume the following form  

 

 ( ) 22
, 0 0n rz zz zr r z rz zr

z

m m m m m m u
P r z I

r z r r r r z

     
  

   
         

   
 , (28) 

 ( ) , 0 0n

zzR r z m     . (29) 

 

It should be remarked that in the work of Georgiadis et al. (2000), a simplified boundary condition 

for the monopolar traction ( )nP  was used instead of the exact relation in (28). Next, employing the 

constitutive equations (23) and (24) in conjunction with the geometric relations (21) and (22), the 

boundary conditions are written in terms of the displacement component  ,u r z  as 

 

   
3

2 2 2

3 33 2

1
2 0

u u u
a a g

z r z z

   
       

   
       for  0z   and 0 r   , (30) 

 
2

2 2

3 32 2

1
0

u
a a u

z r

  
     

  
                                 for  0z   and 0 r   , (31) 
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with 3 3 2a a  . The material constant 3a  has dimensions of  
2

length  and can take positive or 

negative values. In particular, from the requirement of positive definiteness of the strain-energy 

density, the inequality 2

3a   should always be satisfied (see Appendix A).  

 

3.2.  Integral-transform analysis and dispersion equation 

In view of the axisymmetry of the problem and in order to suppress the r -dependence in the 

governing equations, the Hankel transform of order one is employed (see e.g. Davies, 2002) 

 

     *

1
0

, ,f z f r z J r rdr 


   ,          *

1
0

, ,f r z f z J r d   


   , (32) 

 

where  1J  is the Bessel function of the first kind and order one. Under the operation of the direct 

Hankel transform and assuming the required regularity conditions for ( , )u r z , Eq. (27) is 

transformed into the following ordinary differential equation  

 

   
4 2

2 2 2 2 4 2 2

4 2
2 0

d u d u
g g k u

dz dz
  

 
       , (33) 

 

where the range of the transform variable   can be extended, by analytic continuation, into the 

whole complex plane. Now, Eq. (33) has the following bounded solution as z   

 

     , z zu z B e C e           for    0z   , (34) 

 

provided that the  -plane has been cut appropriately, taking the branch cuts for  ,   as shown 

in Fig. 2. In this case,  B   and  C   are unknown functions of the wavenumber   and  ,   

are the relevant roots given by 

 

   
1 2

2 2       ,    with    
 

 

1 2
1 2

2 2 2

1 2
2

4
0

2

g k g


  
     , (35) 
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   
1 2

2 2       ,    with    
 

 

1 2
1 2

2 2 2

1 2
2

4
0

2

g k g


  
     . (36) 

 

The criterion for surface waves in this case is that the displacement u  decays exponentially with 

the distance z  from the free surface. Such a case for a homogeneous half-space is precluded 

according to the classical elasticity theory but can arise, as it is shown below, within the present 

isotropic gradient elasticity theory. Indeed, in view of the analysis leading to (34) and taking into 

account the structure of the inverse Hankel transform (32)2, we now explore the possibility of 

progressive-wave solutions of Eq. (25) having the form of a distinct time harmonic component  

 

     *

1, , ; , i tu r z t u z J r e       , (37) 

 

where the propagation wavenumber   is taken to be a real quantity, and  ,   defined in (35) 

and (36) are taken to be real and positive functions. The latter restriction is satisfied if and only if 

  . Taking a real wavenumber excludes the possibility of localized standing waves (i.e. leaky 

or evanescent motions). Finally, we remark that a general surface-wave motion (synthesis) can be 

derived by superposition as a Hankel inversion integral (Eringen and Suhubi, 1975) 

 

       *

1
0

, , ,s

i t
u r z t u z J r e d

 
   

 
   . (38) 

 

where integration is over the whole range of wavenumbers. Note that in Eq. (37) the frequency   

and the wavenumber   are related through the pertinent dispersion equation (c.f. (40)) in order for 

each distinct torsional surface wave component to propagate. 
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Fig. 2: The cut complex ξ-plane for the functions     and    . 

 

 

The appropriate dispersion equation is now obtained by enforcing the traction-free boundary 

conditions (30) and (31) along the half-space surface 0z . Transforming the boundary 

conditions, the following linear homogeneous system results for the unknown amplitudes B  and 

C  

 

   

   

2 2 2 2 2 2

3 3

2 2 2 2 2 2

3 3

0

0

a a B

Ca a

     

   

      
     
       

 , (39) 

 

which has a nontrivial solution if and only if the determinant of the matrix  ,D V  is zero 

 

     
2 2

2 2 2 2 2 2

3 3, 0D V a a            , (40) 

 

where V    is the gradient phase velocity of the torsional surface waves (note that, in what 

follows, V  should not be confused with the volume of the body defined in Section 1). Equation 

(40) is the dispersion relation for the motion of progressive torsional surface waves in a gradient-

elastic homogeneous and isotropic half-space. From this equation, dispersion curves are obtained 

and will be presented in Section 5. Regarding the nature of the dispersion equation (40), the 

following observations are in order:  

(i) Torsional surface waves exist if and only if  

 



 

 

17 

2 0     and    3 0a   , (41) 

 

the cases, ( 2 0 ) or ( 2 0  and 3 0a  ) lead to non-existence of such waves. Indeed, the case 

2 0  leads to a degeneracy of the governing PDE (27) and thus the traction-free boundary 

conditions in (30) and (31) cannot be satisfied. On the other hand, for 3 0a  , the dispersion 

equation degenerates to:   0   (since   0   and        , for all real wavenumbers 

 ), which, according to Eq. (39), implies that the amplitude C  is zero and therefore, in this case, 

no torsional surface waves exist. It is worth noting that when 3 0a  , the complete Toupin-Mindlin 

gradient theory, employed in the present work, degenerates to the simplified version of gradient 

isotropic elasticity which consequently is unable to predict torsional surface waves (or SH surface 

waves, as it will be shown in the next section). 

(ii) The dispersion equation (40) being an irrational algebraic equation is a monomode 

equation and this is in some contrast with the infinity of modes resulting from transcendental 

equations, which correspond to non-homogeneous models of a half-space supporting torsional 

surface waves in the classical theory (Meissner, 1921; Vardoulakis, 1984). 

 

 

4.  SH surface waves in a gradient elastic half-space 

4.1.  Governing equations for time-harmonic antiplane shear motions 

Antiplane shear (i.e. horizontally polarized – SH) motions are now examined in a 

homogeneous and isotropic gradient-elastic half-space. With respect to an Oxyz  Cartesian 

coordinate system, the half-space occupies the region ( x  , 0y  ) and is long enough in 

the z -direction to allow an antiplane shear state when loadings act in the same direction (Fig. 3). 

In this case any problem is essentially two-dimensional depending on ( ,x y ). Then, the 

displacement field assumes the following form 

 

0x yu u    ,   , , 0zu w x y t   . (42) 
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Fig. 3: An elastic half-space in an antiplane shear state. 

 

 

Accordingly, the non-vanishing components of the strain and the strain-gradient tensors are 
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2
xyz yxz

w

x y
 


 

 
 . (44) 

 

In view of the above, and taking into account the constitutive equations in (3) and (4), the 

monopolar and dipolar stresses become  

 

xz

w

x
 





 ,    yz

w

y
 





 , (45) 

 

2 2
2

32 2xxz

w w
m a

x y

 
 

 
   ,    

2 2
2

32 2yyz

w w
m a

y x

 
 

 
   , 

 
2

2

3xyz yxz

w
m m a

x y


  

 
  . (46) 

 

Now, a steady state response of the half-space is assumed where the displacement varies in 

the following time-harmonic manner 
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   , , , e i tw x y t w x y    . (47) 

 

In this case, the equation of motion (9) becomes  

 

2 4 2 2 0w g w k w      , (48) 

 

where      2 2 2

x y     is the 2D Laplace operator in Cartesian coordinates, and  ,k g  are 

defined in Section 3.1. 

The pertinent boundary conditions for a traction-free half-space follow from Eqs. (7) and 

(8). In particular, for a boundary defined by the plane 0y   with  0, 1, 0 n , they take the 

following form  

 

 ( ) 2, 0 0
xyz yyz yxzn

z yz

m m m w
P x y I

x y x y
 

   
      

   
 , (49) 

 ( ) , 0 0n

z yyzR x y m    . (50) 

 

Finally, employing the constitutive equations (45) and (46), we may write the boundary conditions 

in terms of the displacement w  as 

 

 
3 3

2 2

33 2
2 0

w w w
a g

y x y y

  
   

   
    for    0y    and  x   , (51) 

2 2
2

32 2
0

w w
a

y x

 
 

 
    for    0y      and    x  . (52) 

 

4.2.  Integral-transform analysis and the dispersion equation 

In order to suppress the x -dependence in the governing equations and the boundary 

conditions, the Fourier transform is employed. The direct Fourier transform and its inverse are 

defined as follows (Davies, 2002) 
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   , , ixf y f x y e dx





 

     ,       
1

, ,
2

ixf x y f y e d


 


 

 


 . (53) 

 

Transforming the governing equation (48) with (52)1 gives the following ODE 

 

   
4 2

2 2 2 2 4 2 2

4 2
2 0

d w d w
g g k w

dy dy
  

 
       . (54) 

 

The general transformed solution of (54) has the following bounded at y   form 

 

     , y yw y B e C e           for  0y   , (55) 

 

where the functions  ,   are defined in (35) and (36), respectively, and the unknown amplitudes 

 ,B C  can be determined through the enforcement of the pertinent boundary conditions. We note 

that the branch cuts in Figure 2 are introduced in the complex  -plane in such a manner that a 

bounded solution at y   is secured. Therefore, any inversion according to (53)2 should be 

performed considering this restriction (i.e. the cut plane). 

The appropriate dispersion equation is obtained again by enforcing the pertinent boundary 

conditions along the traction-free half-space surface 0y  . In particular, it is found that the 

dispersion equation for the motion of progressive SH surface waves in a gradient-elastic 

homogeneous and isotropic half-space is the same as the one characterizing the propagation of 

torsional surface waves (c.f. Eq. (40)). More specifically, SH surface waves exist if and only if 

2 0  and 3 0a  ; the cases ( 2 0 ) or ( 2 0  and 3 0a  ) lead to non-existence of SH surface 

waves. Thus, the simplified version gradient isotropic elasticity ( 3 0a  ) is not capable of 

predicting such surface waves. 

 

 

5.  Numerical results and discussion 

In order now to present numerical results in an effective way, the following normalizations 

are introduced  
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d h   ,    
3

d

s

h

c


   ,    d

s

V
V

c
  ,    3

2

a
   ,    

3

h
   . (56) 

 

Note that the normalized parameter   should be bounded by the inequality 1   due to positive 

definiteness of the strain energy, and also 0   for torsional and SH surface waves to exist in a 

homogeneous and isotropic half-space. Moreover, the wavelength   is introduced through the 

standard relation  2 . Three different relations for the ratio of the two microstructural 

characteristic lengths h  and  are taken to obtain numerical results, viz. (i) 2  , (ii) 1  and 

(iii) 1 2  , whereas six different values of  , viz.  0.1,  0.5,  0.9,  0.999,  0.1, 0.9     are 

considered in each of the previous cases. All the results presented in this section refer to the 

propagation of both torsional and SH surface waves, since these surface waves are governed by 

the same dispersion equation in the Toupin-Mindlin theory of gradient elasticity. 
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Fig. 4: Dispersion curves for the propagation of torsional / SH surface waves showing the variation  

of the normalized phase velocity 
s

V c  with the normalized (a) wavenumber h  and (b) wavelength h , 

for a microstructured material with 2  .
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Figures 4a and 4b illustrate the variation of the normalized gradient phase velocity dV  with 

the normalized wave number d  and the normalized wavelength h , respectively, for a material 

with a ratio of the microstructural lengths 2  . It is observed that torsional and SH surface 

waves exist for all wavenumbers (no cut-off frequencies appear). This finding is in contrast with 

previous works by Vardoulakis and Georgiadis (1997), and Georgiadis et al. (2000), where it was 

shown that torsional and SH waves exist only in certain ranges of frequencies. Moreover, as it is 

shown in Figure 4a, the phase velocity decreases with increasing wave numbers. This decrease is 

more pronounced as we approach the upper positive definiteness border 1   (curve 4). On the 

other hand, for increasing negative values of   the decrease of the phase velocity is more 

moderate. As the wavelength increases (compared to the material microstructure), the phase 

velocity tends to the classical shear wave velocity sV c  (Fig. 4b). This is to be expected 

intuitively since for relatively long wavelengths the wave should not „see‟ the material 

microstructure. On the other hand, as the wavelength decreases 0h   ( d  ), the phase 

velocity attains a constant value that depends on the microstructural ratios   and  . This limit 

value can be analytically evaluated by first noting that the dispersion relation (40) exhibits the 

following asymptotic behavior as d   

 

   
     

 

1 2 22 2 2 2 2

5 3

5

1 1 1
, ,

9 3

d d

d d d d

V V
D V D V O

   
   



     
      . (57) 

 

The pertinent limit value of the phase velocity of torsional / SH surface waves is given then by the 

value of dV  for which the coefficient of the leading order term of (57) vanishes. It is noted that, 

within the bounds of the strain-energy density positive definiteness, this equation has always one 

real non-zero positive root. As 1   or    the limit velocity becomes zero, while as 0   

(i.e. zero micro-inertia: 0h  ) the limit velocity becomes infinite as d  . The last observation 

can be also inferred from the second equation in (14), where it is apparent that for 0h   the 

velocity tends to infinity as the wavenumber increases.  

Another issue, which merits discussion, pertains to the form of the dispersion curves. In 

particular, we observe from Figure 4a that 0dV d   for all wavenumbers, which, in turn, 

implies that in the case 2  , waves exhibit normal dispersion. This is more clearly depicted in 
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Figures 5a and 5b, where the variation of the group velocity 
g

V d d   is plotted with respect 

to the normalized wavenumber. Indeed, it is apparent from Figure 5b that 
g

V V  for all 

wavenumbers and, thus, the dispersion is normal, a result in agreement with observations in 

crystal lattice theories (e.g. Gazis et al., 1960). The difference between the phase velocity and the 

group velocity becomes more significant for wavenumbers in the range 2 6h   and as 1  . 

For large wavenumbers (high frequencies), the group velocity, in accordance with the behavior of 

the phase velocity (see Fig. 4), attains a constant value that depends on the material 

microstructure. 
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Fig. 5: Variation of the group velocity 
g

V  normalized with (a) the classical shear wave velocity  

and (b) the gradient phase velocity of the torsional / SH surface waves,  

versus the normalized wavenumber h  for a microstructured material with 2  . 
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Fig. 6: Dispersion curves for the propagation of torsional / SH surface waves showing the variation  

of the normalized phase velocity 
s

V c  with the normalized (a) wavenumber h  and (b) wavelength h , 

for a microstructured material with 1  . 

 

 

 

Figures 6a and 6b illustrate the variation of the normalized phase velocity dV  with the 

normalized wave number d  and the normalized wavelength h , respectively, for a material 

with 1  . It is worth noting that in the case 1 , the torsional and SH waves travel without 

dispersion in an infinite medium and their velocities degenerate into the ones of classical 

elastodynamics (cf. (14)2). For the half-space case considered here, these waves are “almost” non-

dispersive in the range 1 0.5    (curves 1, 2, 1΄ and 2΄ in Figs. 6a and 6b). Indeed, in that 

range the phase velocity is almost equal to the classical shear wave velocity. However, as 1  , 

the dispersive character of these waves becomes more pronounced with increasing wavenumbers 

(curves 3 and 4). In addition, from Figures 7a and 7b, we observe that 
g

V V  for all 

wavenumbers and, thus, the dispersion is again normal. For large wavenumbers (high 

frequencies), the group velocity, in accordance with the behavior of the phase velocity (see Figs. 

6a and 6b), attains a constant value that depends on the microstructural parameters. 
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Fig.7: Variation of the group velocity 
g

V  normalized with (a) the classical shear wave velocity  

and (b) the phase velocity of the torsional / SH surface waves,  

versus the normalized wavenumber h  for a microstructured material with 1  .
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Fig. 8: Dispersion curves for the propagation of torsional / SH surface waves showing the variation  

of the normalized phase velocity 
s

V c  with the normalized (a) wavenumber h  and (b) wavelength h , 

for a microstructured material with 1 2  . 
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Fig. 9: Variation of the group velocity 
g

V  normalized with (a) the classical shear wave velocity  

and (b) the phase velocity of the torsional / SH surface waves,  

versus the normalized wavenumber h  for a microstructured material with 1/ 2  . 

 

 

The case 1 2   is examined in Figures 8 and 9. Contrary to the previous cases (Figs. 4-6), 

the phase velocity of the torsional and SH waves may exceed now the classical shear wave 

velocity. More specifically, it is observed from Figure 8a that for small values of the normalized 

parameter  , the normalized phase velocity in gradient elasticity increases above unity with 

increasing wavenumbers reaching a plateau of a constant limiting value, which can be obtained 

from Eq. (57). On the other hand, as   increases approaching unity (curves 3 and 4), the phase 

velocity increases for a small range of wavenumbers ( 0 2d  ) and then subsequently decreases 

resembling the behavior of cases 2   and 1  , discussed previously. Regarding the nature of 

the dispersion curves, we note that for values of the normalized parameter in the range: 

1 0.8   , the group velocity exceeds the phase velocity 
g

V V  for all wavenumbers, and thus 

the dispersion is anomalous (Fig. 9b). This finding is agreement with experimental results in 

granular type materials such as ceramics, sand, concrete, foams, glassy polymers and bones (see 

e.g. Chen and Lakes, 1989; Giovine and Oliveri, 1995; Stavropoulou et al., 2003; Salupere et al., 

2005) Moreover, this behavior reminds analogous results for Stoneley interface waves in a half-
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space with a superficial layer (Achenbach and Epstein, 1967), and surface waves in liquids that 

possess surface tension (Coulson, 1958). However, as   increases tending to unity (curves 3 and 

4), the dispersion becomes normal again apart from a small initial range of wavenumbers (Fig. 

9b). 

Finally, Figure 10 shows the variation of the normalized frequency d  of torsional and SH 

waves with respect to the normalized wavenumber d . It is observed that the form of the 

dispersion curves depends strongly on the ratio of the microstructural parameters 3h  . In 

particular, for 1   the dispersion is always normal for all wavenumbers. It is worth noting that 

the same qualitative behavior of the dispersion curves was observed in surface elastic waves and 

bulk mode vibrations of cubic crystal lattices (Gazis et al., 1960). On the other hand, as   

decreases ( 0h ), the contribution of the micro-inertia is small and an anomalous dispersion 

behavior prevails. An analogous situation is encountered in many auxetic structures and acoustic 

metamaterials (see e.g. Chen and Lakes, 1989; Fang et al., 2006) 
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Fig. 10: Dispersion curves showing the variation of the normalized frequency 
d

  with the normalized 

wavenumber d  for a microstructured material with (a) 0.1  , (b) 0.9  , and various ratios  . 
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6.  Concluding remarks 

The present study showed that the existence of torsional and SH surface waves in a 

homogeneous and isotropic elastic half-space is possible within the framework of the complete 

Toupin-Mindlin gradient elasticity theory. The complete theory involves five constants 

(microstructural parameters) in addition to the standard two Lame moduli. This existence of 

surface waves is in marked contrast with the well-known result of the classical theory of linear 

elasticity that torsional / SH surface waves do not exist in a homogeneous half-space. Moreover, 

our results show that the inclusion of surface energy terms (i.e. gradient anisotropy) used in the 

past in analogous gradient-type formulations is not necessary for the prediction of torsional and 

SH waves (Vardoulakis et al., 1997; Georgiadis et al., 2000). In particular, it was shown that 

torsional and SH waves can propagate in a homogeneous and isotropic gradient elastic half-space 

at all frequencies (i.e. no cut-off frequencies appear) and that both waves are governed by the 

same dispersion equation. In the case where the wavelengths are comparable to the grain size of 

the material, the dispersion characteristics depend strongly upon the microstructural parameters. In 

fact, depending on the contribution of the micro-inertia term a normal or an anomalous dispersion 

behavior may be observed. 

 

 

Appendix A 

For an isotropic gradient material, the positive definiteness of the strain-energy density 

imposes certain constraints both on the classical and the gradient (microstructural) elastic moduli. 

Employing a Voigt-type representation, we can rewrite the strain energy density in Eq. (2) as 

 

1 1

2 2
W   Cε Β    , (A1) 

 

where C  is the classical elasticity fourth-order tensor represented here as a 6 6  matrix with two 

independent components  ,   in the isotropic case, and Β  is the gradient elasticity fourth-order 

tensor represented here as an 18 18  symmetric matrix with five independent components 

 1 2 3 4 5, , , ,a a a a a  in the isotropic case. The matrix Β  can be written in the following block-

diagonal form 
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1 1 1 2

1 1 1 2

1 1 1 2

2 2 2 2

 
 
 
 
 
 

D 0 0 0

0 D 0 0
B

0 0 D 0

0 0 0 D

 , (A2) 

 

with submatrices  

 

 

 

 

 

 

2 4 2 1 5 1 1 2

2 2 4 1 1 5 1 2

1 1 5 1 3 4 5 3 1 3

1 1 5 3 3 4 5 1 3

1 2 1 2 1 3 1 3 1 2 3 4 5

2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

a a a a a a a a

a a a a a a a a

a a a a a a a a a

a a a a a a a a a

a a a a a a a a a a a a a

   
 

   
     
 

    
         

D , (A3) 

 

and 

 

4 5 5

2 5 4 5

5 5 4

2

2 2

2

a a a

a a a

a a a

 
 


 
  

D  . (A4) 

 

The submatrices 10  and 20  denote 5 5  and 3 3  zero matrices, respectively. In addition, in Eq. 

(A1),   is a 18 1  vector with components in the following order 

 

 122 133 212 331 111 211 233 112 332 222 311, , , , , , , , , , ,             . 

                                                                  322 113 223 333 123 213 312, , , , , ,        . (A5) 

 

The determinant of the matrix Β  can be represented in the form of a product of four determinants  

 

3

1 2Β D D  . (A6) 

 

In accordance with Sylvester‟s criterion, positive definiteness of the quadratic form in (A1) 

requires the leading principal minor (PM) determinants of C  and Β  to be positive. Regarding the 
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elasticity tensor C , the usual inequalities for the Lamé moduli are obtained: 3 2 0    and 

0  . On the other hand, for the gradient elasticity tensor Β  the pertinent conditions can be 

derived by examining separately the determinants of 1D  and 2D . In particular, from the leading 

PM determinants of 2D , we deduce the following inequalities 

 

4 0a   ,    4 5 0a a   ,    4 52 0a a   . (A7) 

 

Further, the necessary conditions for the matrix Β  to be positive definite is that all its diagonal 

elements are positive, thus 

 

1 2 3 4 5 0a a a a a      ,    3 4 52 0a a a    ,    2 4 0a a   . (A8) 

 

Multiplying (A8)1 by the factor 2 and adding it to (A7)2, we obtain also that 

 

0 1 2 3 4 52 2 2 3 3 0b a a a a a       . (A9) 

 

The first three leading PM determinants of 1D  do not yield any new inequalities for the 

parameters ja , whereas the fourth leading PM furnishes 

 

      
2

4 5 4 5 1 2 3 4 5 0 1 2 32 4 8 2 6 3 4 2 0a a a a a a a a a b a a a           
 

 , (A10) 

 

which, in turn, implies that 

 

1 1 2 3 4 54 8 2 6 3 0b a a a a a        . (A11) 

 

Moreover, from the requirement that 1 0D  (5
th

 leading PM), we have that 

 

          
2 2

4 5 4 5 1 1 2 3 4 5 1 2 32 2 5 3 5 4 2 0a a a a b a a a a a a a a          
 

 , (A12) 
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which, in view of the above, shows that 

 

   2 1 2 3 4 55 3 0b a a a a a          and     
2

1 2 1 2 32 5 4 2 0b b a a a     . (A13) 

 

In addition, combining the inequalities (A13) with (A11) yields 

 

3 4 510 6 0a a a    . (A14) 

 

It is worth noting that the inequalities (A7), (A11) and (A13) are equivalent to the ones obtained 

by Mindlin and Eshel (1968), and Eshel and Rosenfeld (1970) in the Form III of Mindlin‟s 

gradient elasticity theory (Mindlin, 1964). 

Finally, recalling that 2

3 4 52 2a a a    , we derive, according to (A7)2, (A8)2 and (A14), 

the following bounds of positive definiteness for the parameter 3a  

 

2 2

3a    , (A15) 

 

with 3 3 2a a  . 

 

 

Acknowledgement 

Panos A. Gourgiotis gratefully acknowledges support from the ERC Advanced Grant „Instabilities 

and nonlocal multiscale modelling of materials‟ FP7-PEOPLE-IDEAS-ERC-2013-AdG (2014-

2019). 

 

 

References 

Achenbach, J.D., 1984. Wave propagation in elastic solids. North-Holland, Amsterdam. 

Achenbach, J.D., Balogun, O., 2010. Anti-plane surface waves on a half-space with depth-

dependent properties. Wave Motion 47, 59-65. 

Achenbach, J.D., Epstein, H.I., 1967. Dynamic interaction of a layer and a half-space. J. Eng. 

Mech. 5, 27-42. 



 

 

32 

Bleustein, J.L., 1967. A note on the boundary conditions of Toupin's strain-gradient theory. Int. J. 

Solids Struct. 3, 1053-1057. 

Bullen, K.E., Bolt, B.A., 1985. An introduction to the theory of seismology. Cambridge 

University Press, London. 

Chattaraj, R., Samal, S.K., Mahanti, N.C., 2011. Propagation of torsional surface wave in 

anisotropic poroelastic medium under initial stress. Wave Motion 48, 184-195. 

Chen, C.P., Lakes, R.S., 1989. Dynamic wave dispersion and loss properties of conventional and 

negative poisson's ratio polymeric cellular materials. Cell. Polym. 8, 343-359. 

Collet, B., Destrade, M., Maugin, G.A., 2006. Bleustein–Gulyaev waves in some functionally 

graded materials. Eur. J. Mech. A-Solid 25, 695-706. 

Coulson, C.A., 1958. Waves. Oliver and Boyd, Edinburgh. 

Davies, B., 2002. Integral transforms and their applications. Springer, New York. 

Dey, S., Gupta, S., Gupta, A., 1993. Torsional surface wave in an elastic half-space with void 

pores. Int. J. Numer. Anal. Methods Geomech. 17, 197-204. 

Du, C., Su, X., 2013. SH surface waves in a half space with random heterogeneities, 

Computational methods in stochastic dynamics. Springer, pp. 255-266. 

Eringen, A.C., 1972. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. 

Eng. Sci. 10, 425-435. 

Eringen, A.C., Suhubi, E.S. 1975. Elastodynamics, Vol. 2. Academic Press, New York. 

Eshel, N.N., Rosenfeld, G., 1970. Effects of strain-gradient on the stress-concentration at a 

cylindrical hole in a field of uniaxial tension. J. Eng. Math. 4, 97-111. 

Fafalis, D.A., Filopoulos, S.P., Tsamasphyros, G.J., 2012. On the capability of generalized 

continuum theories to capture dispersion characteristics at the atomic scale. Eur. J. Mech. A-

Solid 36, 25-37. 

Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., Zhang, X., 2006. Ultrasonic 

metamaterials with negative modulus. Nat. Mater. 5, 452-456. 

Filopoulos, S., Papathanasiou, T.K., Markolefas, S.I., Tsamasphyros, G.J., 2010. Dynamic finite 

element analysis of a gradient elastic bar with micro-inertia. Comput. Mech. 45, 311-319. 

Gao, X.-L., Ma, H., 2009. Green‟s function and Eshelby‟s tensor based on a simplified strain 

gradient elasticity theory. Acta Mech. 207, 163-181. 

Gazis, D.C., Herman, R., Wallis, R.F., 1960. Surface elastic waves in cubic crystals. Physical 

Review 119, 533. 



 

 

33 

Georgiadis, H.G., Anagnostou, D.S., 2008. Problems of the Flamant–Boussinesq and Kelvin type 

in dipolar gradient elasticity. J. Elast. 90, 71-98. 

Georgiadis, H.G., Vardoulakis, I., Lykotrafitis, G., 2000. Torsional surface waves in a gradient-

elastic half-space. Wave Motion 31, 333-348. 

Georgiadis, H.G., Vardoulakis, I., Velgaki, E.G., 2004. Dispersive rayleigh-wave propagation in 

microstructured solids characterized by dipolar gradient elasticity. J. Elast. 74, 17-45. 

Georgiadis, H.G., Velgaki, E.G., 2003. High-frequency rayleigh waves in materials with micro-

structure and couple-stress effects. Int. J. Solids Struct. 40, 2501-2520. 

Giannakopoulos, A.E., Petridis, S., Sophianopoulos, D.S., 2012. Dipolar gradient elasticity of 

cables. Int. J. Solids Struct. 49, 1259-1265. 

Giovine, P., Oliveri, F., 1995. Dynamics and wave propagation in dilatant granular materials. 

Meccanica 30, 341-357. 

Gourgiotis, P.A., Georgiadis, H.G., 2009. Plane-strain crack problems in microstructured solids 

governed by dipolar gradient elasticity. J. Mech. Phys. Solids 57, 1898-1920. 

Gourgiotis, P.A., Georgiadis, H.G., Neocleous, I., 2013. On the reflection of waves in half-spaces 

of microstructured materials governed by dipolar gradient elasticity. Wave Motion 50, 437-

455. 

Grentzelou, C.G., Georgiadis, H.G., 2008. Balance laws and energy release rates for cracks in 

dipolar gradient elasticity. Int. J. Solids Struct. 45, 551-567. 

Jaunzemis, W., 1967. Continuum mechanics. Macmillan, New York. 

Kraut, E., 1971. Surface elastic waves - a review. Acoustic Surface Wave and Acousto-optic 

Devises, Optosonic Press, New York. 

Maugin, G., 1988. Shear horizontal surface acoustic waves on solids, Recent developments in 

surface acoustic waves. Springer, pp. 158-172. 

Meissner, E., 1921. Elastische oberflachenwellen mit dispersion in einem inhomogenen medium. 

Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich 66, 181-195. 

Mindlin, R.D., 1964. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78. 

Mindlin, R.D., Eshel, N.N., 1968. On first strain-gradient theories in linear elasticity. Int. J. Solids 

Struct. 4, 109-124. 

Morini, L., Piccolroaz, A., Mishuris, G., 2014. Remarks on the energy release rate for an antiplane 

moving crack in couple stress elasticity. Int. J. Solids Struct. 51, 3087-3100. 

Piccolroaz, A., Movchan, A.B., 2014. Dispersion and localisation in structured rayleigh beams. 

Int. J. Solids Struct. 51, 4452-4461. 



 

 

34 

Polyzos, D., Fotiadis, D.I., 2012. Derivation of Mindlin‟s first and second strain gradient elastic 

theory via simple lattice and continuum models. Int. J. Solids Struct. 49, 470-480. 

Rayleigh, L., 1885. On waves propagated along the plane surface of an elastic solid. Proc. R. Soc. 

London, Sect. A. 17, 4-11. 

Rosi, G., Nguyen, V.-H., Naili, S., 2014. Reflection of acoustic wave at the interface of a fluid-

loaded dipolargradient elastic half-space. Mech. Res. Commun. 56, 98-103. 

Salupere, A., Engelbrecht, J., Ilison, O., Ilison, L., 2005. On solitons in microstructured solids and 

granular materials. Math. Comput. Simul 69, 502-513. 

Shodja, H.M., Zaheri, A., Tehranchi, A., 2013. Ab initio calculations of characteristic lengths of 

crystalline materials in first strain gradient elasticity. Mech. Mater. 61, 73-78. 

Shuvalov, A.L., Poncelet, O., Golkin, S.V., 2009. Existence and spectral properties of shear 

horizontal surface acoustic waves in vertically periodic half-spaces. Proc. R. Soc. London, 

Ser. A 465, 1489-1511. 

Thompson, J., 1969. Some existence theorems for the traction boundary value problem of 

linearized elastostatics. Arch. Ration. Mech. Anal. 32, 369-399. 

Ting, T.C.T., 2010. Existence of anti-plane shear surface waves in anisotropic elastic half-space 

with depth-dependent material properties. Wave Motion 47, 350-357. 

Toupin, R.A., 1962. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385-414. 

Vardoulakis, I., 1984. Torsional surface waves in inhomogeneous elastic media. Int. J. Numer. 

Anal. Methods Geomech. 8, 287-296. 

Vardoulakis, I., Georgiadis, H.G., 1997. SH surface waves in a homogeneous gradient-elastic half-

space with surface energy. J. Elast. 47, 147-165. 

Vavva, M.G., Protopappas, V.C., Gergidis, L.N., Charalambopoulos, A., Fotiadis, D.I., Polyzos, 

D., 2009. Velocity dispersion of guided waves propagating in a free gradient elastic plate: 

Application to cortical bone. J. Acoust. Soc. Am. 125, 3414-3427. 

 


