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Abstract. A plane-strain model of multiple shear bands, arranged in different
configurations, is presented in order to investigate the effects of their dynamic
interaction. Reference is made to a material stressed to the verge of instability
and subject to incoming harmonic waves of small amplitude. It is shown that
shear band arrays may be subject to resonance and corresponding shear band
growth or, conversely, to shear band annihilation. At the same time, multiple
scattering may bring about focusing or, conversely, shielding from waves.

Keywords: Shear band � Wave propagation � Pre-stress

1 Introduction

Interaction of shear bands has been documented so far for quasi-static deformation
processes [1], where it has been shown that different shear band patterns emerge as
related to load conditions and material properties of the samples, and where parallel,
aligned, and converging shear bands [2] are frequently observed. In dynamics, results
are restricted to high strain-rate loading, where numerical simulations [3] have been
presented. In this context, experiments on metallic glass [4] show the development of a
complex texture of multiple shear bands, with complex interactions.

Direct experimental investigation on the fine development of shear bands in a
material and their effect on the stress field during time-harmonic vibrations remains
difficult to be carried out, so that mechanical modelling represents the worthwhile way
to shed light on a complex phenomenon, whose comprehension is a key point for
engineering materials with enhanced mechanical properties.

In this paper, shear bands of finite length are idealized as discontinuity surfaces,
formed inside the infinite medium at a certain stage of a continuous deformation. Each
shear band is seen as a weak surface whose faces can freely slide, but are constrained to
remain in contact.

2 Constitutive Equations

The incremental behaviour of an infinite, incompressible, nonlinear elastic material,
homogeneously deformed under plane strain condition, is considered. According to
Biot [5], the constitutive relations between the nominal stress increment _tij and the
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gradient of incremental displacement vi;j (a comma denotes partial differentiation) can
be expressed in the principal reference system of Cauchy stress (here denoted by axes
x1 and x2) as follows

_tij ¼ Kijklvl;k þ _pdij ð1Þ

where repeated indices are summed and range between 1 and 2, dij is the Kronecker
delta, _p is the incremental hydrostatic stress and Kijkl are the instantaneous moduli.
These moduli possess the major symmetry Kijkl ¼ Kklij and are functions of principal
components of Cauchy stress, r1 and r2, describing the pre-stress, and of two incre-
mental moduli l and l� (which can depend arbitrarily on the current stress and strain)
corresponding to shearing parallel to, and at 45° to, the principal stress axes. The non-
null components are:

K1111 ¼ l� �
r
2
� p; K1122 ¼ K2211 � l�; K2222 ¼ l� þ

r
2
� p ð2Þ

K1212 ¼ lþ r
2
; K1221 ¼ K2112 ¼ l� p; K2121 ¼ l� r

2

with

r ¼ r1 � r2; p ¼ r1 þ r2ð Þ=2: ð3Þ

Equation (1) is complemented by the incompressibility constraint for incremental
displacement vi

vi;i ¼ 0: ð4Þ

Constitutive Eqs. (1)–(4) describe a broad class of material behaviors, including all
possible elastic incompressible materials which are isotropic in an initial state, but also
materials which are orthotropic with respect to the principal stress directions.

3 The Boundary Value Problem

In Fig. 1 possible different arrays of shear bands, each one of total length 2l, are
represented together with local reference systems ðx̂1; x̂2Þ centered on each shear band,
with x̂1-axis aligned parallel to the shear band, and rotated at an angle h with respect to
the principal reference system ðx1; x2Þ introduced for constitutive Eq. (1).

According to the model described in [6], by introducing the jump operator for a
generic function f, smooth on two regions labeled “+” and “−”, and discontinuous
across the surface Sn of the nth shear band, as

f½ �½ � ¼ f þ � f� ð5Þ
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where f� denote the limits approached by function f at the faces of the discontinuity
surface, the boundary conditions at shear band surface Sn can be written as

v̂2½ �½ � ¼ 0; t̂22½ �½ � ¼ 0; t̂21 ¼ 0 ð6Þ

with v̂i, t̂ij being incremental displacement and incremental stress components in the
local reference system.

Time-harmonic incident shear waves of circular frequency X characterized by
incremental displacement field vinc xð Þ, with amplitude A and phase velocity c, prop-
agation direction p and direction of motion d, are considered

vinc ¼ Adei
X
c x�p�ctð Þ ð7Þ

so that the total incremental displacement field v(x) is given by the sum of the incident
and of the scattered field vsc xð Þ.

The dynamic response of the medium in terms of total incremental displacement
field can be found by adopting integral representations for the wave-fields as is shown
in [7], using the infinite body Green function [8]. The system of boundary integral
equations in the unknown scalar functions v̂1½ �½ � at each Sn, i.e. the jumps of tangential
incremental displacement across the faces of each shear band, has been given in [7].

4 Numerical Examples

Using a collocation method, the boundary integral equation system in [7] can be
transformed into a linear algebraic system where the unknown nodal values of dis-
placement jumps across shear band faces can be determined in terms of known nodal
values of incident tangential tractions on shear bands. To this purpose, each shear band
is subdivided into Q line elements (Q = 100), and a quadratic variation of the incre-
mental displacement jump is assumed within each line element, with the exception of
two line elements situated at the shear band tips, where a square root variation is
adopted to take into account the singularity at the shear band tip.

Fig. 1. Arrays of shear bands: a parallel; b aligned; c converging; d with 4 shear bands.
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A ductile low-hardening metal, modelled through the J2-deformation theory of
plasticity [9–11], with the hardening exponent N = 0.4 (representative of a medium
carbon steel) is considered. A level of prestress close to the elliptic boundary, with
k ¼ r=2l ¼ 0:87 and n ¼ l=l� ¼ 0:26, corresponding to shear band inclination
h ≅ ±26°, is assumed so that some shear bands are expected to be already formed.

The material response to shear waves with angle of incidence b (see Fig. 1) and
wavenumber Xl=c1 ¼ 1 (c1 is the propagation velocity in the direction of x1-axis), is
shown in terms of modulus of the incremental deviatoric strain field for arrays of shear
bands which are parallel (Fig. 2), aligned (Fig. 3), converging (Fig. 4) or formed by

Fig. 2. Parallel shear bands with parallel incident wave (b = h).

Fig. 3. Aligned shear bands with parallel incident wave (b = h).
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four shear bands (Fig. 5). In all figures, maps show the scattered wave-field on the left
hand side and the total wave-field on the right hand side, with the exception of Fig. 4
where only the total wave-field is reported.

Fig. 4. Converging shear bands with different angles of wave incidence (distance d = l/10).

Fig. 5. Four shear bands with horizontal incident wave (b = 0).
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In Fig. 2, graphs on the right side are cross-sections of the scattered deviatoric
strain along x̂2-axis, at the shear band centre. The two cases differ only in the distance
d between the shear bands, with d ¼ 2:5kp=2þ h or d ¼ 4kp=2þ h, where ka is the
wavelength in the propagation direction singled out by angle a. Analogously, in Fig. 3
where a = h.

In Fig. 4a, the dimensionless stress intensity factor is reported as a function of the
angle b of wave incidence. It can be seen that when the wave travels orthogonal to one
shear band, the relevant shear band tip is unloaded. This effect, which corresponds to
annihilation of a shear band, is visible in parts (c) and (d) of the same figure, where one
shear band (dashed white line) “disappears”, while the other one is “highlighted”.

In Fig. 5, focusing of signal is noted in the area circumscribed by shear bands at a
distance d ¼ 8kp=2þ h, whereas shielding is evidenced at a distance d ¼ 8:5kp=2þ h

producing an “island of stress relief”.
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