
Strain-gradient effects in the discrete/continuum
transition via homogenization

Gianluca Rizzi1, Francesco Dal Corso1, Daniele Veber1, Davide Bigoni1

1Department of Civil, Environmental & Mechanical Engineering, University of Trento, Italy

Abstract

Many materials existing in nature and man-made are characterized by a microstructure that
can be represented through a, more or less, periodic spatially repetition of a unit-cell (RVE)
(Fig.1). In order to model a heterogeneous material through a simple constitutive relation to
be exploited in mechanical, thermal and electromagnetic problems, it is possible to introduce
the concept of homogeneous continuous solid energetically equivalent to the heterogeneous
solid. Imposing the equivalence in terms of the energy stored within the two solids when sub-
jected to the same boundary conditions leads to the definition of the constituent’s properties
of the equivalent homogeneous material.

Figure 1: Periodic Lattice

However, an improved description for the equivalent homogeneous material can be achieved
when higher-order constitutive models are considered, due to the additional kinematical de-
grees taken into account, as in the case of Mindlin material [1]. The study of a periodic
lattice, flat, infinitely extended and composed of hexagonal cells formed by three orders of
bars having different stiffness and linked to each other by relative hinges (Fig.1) is here pre-
sented. Results from the imposition of linear displacement boundary conditions confirms the
local equivalent properties obtained by [2] with reference to a periodic pattern similar to that
considered in a discretization problem. Our aim is to achieve the higher-constitutive param-
eters for the equivalent higher-order homogenous solid extending the boundary conditions to
a quadratic displacement field, similarly to [3].

Introduction

An infinite periodic microstructured material is considered as the repetition within a plane of
an hexagonal representative cell, formed by three orders of bars with different stiffness and
which are linked to each other by relative hinges (Fig.2).

Figure 2: Lattice with reference system

The orthogonal axes m and r are introduced together with their respective unit vectors e1,
e2. It is also instrumental for the computations to introduce the axis n, inclined of an angle
π/3 with respect to the m axis. L ad l are respectively the distance between two contiguous
center of RVE and the length of its side. Imposing on the hexagon hinges the boundary
conditions expressed by the following generic quadratic displacement function

ui = αij · xj + βijk · xj · xk (1)

(where u is the displacement vector that is applied to the RVE nodes, x is the position vector
of the nodes, αij is a tensor of the second order is representative of the deformations and
βijk is a tensor of the third order is representative of the curvatures) and comparing the
stored energy within the lattice cell with that stored within an equivalent continuous material
leads to the definition of the unknown constitutive equivalent parameters.

First order homogenization: linear displacement boundary condition

The energetic comparison provides, when linear boundary condition are applied (βijk = 0
in the Eq.(1)), the same results obtained in [2] and defining a first order effective isotropic
material. In particular, the effective bulk and shear modulus (κeff and µeff ) are expressed
by:
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where

I K1 = k + k̃ + k̂
I K2 = k · k̃ + k · k̂ + k̃ · k̂
I K3 = k · k̃ · k̂

The energetic comparison has shown the need of introducing an additional periodic displace-
ment field in the boundary conditions in order to ensure the equilibrium of the lattice for any
linear boundary condition.

Second order homogenization: quadratic displacement boundary condition

As a second step in the energetic comparison the boundary condition is extended to be the
purely quadratic boundary condition (αij = 0 in the (Eq.1)).
The additional energy provided by the high-order constants has to be compared with the
Residual Energy (Wres), given by subtracting Wβ to the energy of the lattice the energy
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in which the ε
β
ij are the strain generated by the quadratic displacement boundary condition

and E I
ijkl is the fourth order tensor obtained from the first order homogenization.

The expression of the Wres shows that the lattice behaves anisotropically at higher-order, and
more specifically that a symmetry is present for multiple rotations of sixty degrees (Symmetry
class Z6). It can be therefore concluded that higher-order materials with different classes of
symmetry exists, namely, isotropic as local behaviour and anisotropic as non-local behaviour
as effective response of the considered periodic lattice.
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