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Abstract

We considered the large deflection of a cantilever beam subject to a concentrated force at its free end in the case that the clamp can continuously rotate. The Euler elastic theory
provides the relationship between the applied load and the deformed shape, so that theoretical paths can be found at varying the clamp angle.An innovative device, named Elastic
Catapult, was designed to experimentally investigate this structural system. During experimental testing a typical snap-through behavior is observed at specific angles of the clamp
when the load is higher than the buckling load. An analytical model is developed to theoretically predict the critical angles of snap-through experimentally observed with the
Elastic Catapult.

The elastica equation

We consider an elastic
cantilever beam of total
length l and stiffness B,
subject to a concentrated
load applied to its free end
with an inclination angle α.
The beam is assumed as
inextensible and shear
deformations are not
considered.

Figure 1: A sketch of the
considered elastic structural
system

The behavior of the rod is described by a non linear, II
order differential equation which is provided by the anal-
ysis of the kinematics of the beam and the standard linear
constitutive law:

Bθ ′′(s) + P1 cos θ(s) + P2 sin θ(s) = 0
θ ′(l) = 0
θ(0) = 0

(1)

where P1 and P2 represents the vertical and the normal
components of the applied load P, respectively.

The equilibrium path of the system

Through many mathematical steps, we find the closed
form solution of equation (1), which provides the rela-
tionship between the applied load and the deflection of
the beam, represented by θL, the rotation angle of the free
end:

P =
B

l2
[K(k) − K(φ0,k)]2 (2)

where φ0 = arcsin
[

sin(α2)
k

]
and K(k) and K(φ0,k) are two elliptic integrals of the first
kind, complete and incomplete respectively.
Equation (2) provides the equilibrium paths of the system:

(a) Equilibrium paths for α > 0 (b) Equilibrium paths for α < 0

Displacements and deformations

The analysis gets along with the displacements field, that
leads to define the deformed configurations of the beam.
Figure (2) shows some examples of the configurations
obtained for different values of the inclination angle of
the load, α:

Figure 2: Deformed shapes

The elastic catapult

In order to study the critical and post-critical behavior of
the system, we designed a novel device, called the elastic
catapult. The set up consists in a polycarbonate beam,
constrained to a rotating fixed joint.

Figure 3: The Elastic Catapult as the experimental
realization of the considered structural system

From an analytical point of view, the device simulates the
behavior of a cantilever beam subjected to a concentrated
force, which continuously changes its application angle
α.

Experimental tests for P < Pcr

At first, some tests were run with an applied load which
was lower than the Euler critical load of the beam. In
this case, the system rotates without suffering instabilities
and it gradually reverse its bending.

(a) α < 0 (b) α = 0−

(c) α = 0+ (d) α > 0

Experimental tests for P > Pcr

When the applied load is greater than the Euler critical
load, the system display a snap-through phenomenon: at
a specific "‘critical"’ value of the inclination angle of the
beam, instability occurs and the system suddenly revers
its bending.

(e) α < αcr (f ) α = α−
cr

(g) α = α+
cr (h) α > αcr

Theoretical explanation

The behavior experimentally observed can be explained
considering the equilibrium path provided by equation
(2). Once the applied load to the free end of the beam
is fixed, the path followed by the system for increasing
values of α sees three different situations, as shown in
figure (4)

Figure 4: The path followed by the system

•when α is lower than αcr, there are three different
solutions to equation (2) and just as many intersections
between the equilibrium curve of the system and the
line that indicates the value of the applied load (see αI);
•when α is equal to αcr, there are only 2 solutions to

equation (2), since the equilibrium path is tangent to
the line of the applied load. These solutions are equal
in value but with different sign (see αII);
•when α is higher than αcr, there is only one solution to

equation (2) and it corresponds to a positive value of
the bending θL (see αIII).

Figure (5) shows a comparison between the theoretical
analysis and the experimental test, which confirms the
reliability of the model.

Figure 5: Comparison between theoretical and
experimental results
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