Numerical and perturbative approaches for strain localization and shear bands phenomena

N. Bordignon1, A. Piccolroaz1, F. Dal Corso1, D. Bigoni1 \\
1 DICAM, Trento, Italy \\
Email: n.bordignon@unitn.it

Strain localization and shear banding are tested with a numerical approach, in which the shear band is modeled as a zero-thickness nonlinear interface. This model is introduced into Abaqus through an external UMAT subroutine which takes into account the elasto-plastic behavior of the materials \cite{1}. The simulation times are improved using an asymptotic technique. This technique permits to model the shear band as a region in which the yield stress is smaller than the yield stress in the matrix.

The numerical approach is contrasted with the perturbative one \cite{2}, in which the behavior of the ductile material is described according to the J2-deformation theory. In this approach, the shear band emerges as a perturbation of the homogeneous prestress state.

Both approaches indicate that the shear bands propagation follows a straight line trajectory under shear loading. This propagation phenomenon is linked to the existence of a strong stress concentration at the tip of the shear band. These concepts are fundamental for describing the failure mechanisms of ductile materials.

\textbf{References}: