
can be easily generalized on thè case of non-uniform deformation for description of thè
shock wave processes in metals.
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Abstract. The incrementai behaviour of a prestressed, elastic, anisotropic and
incompressible material is analyzed in thè dynamic regime, under thè plain
strain condition. Dynamic perturbations of stress/deformation incident wave
fields, caused by a shear band of finite length, formed inside thè material at a
certain stage of continued deformation, are investigated. At thè base of thè
proposed dynamic perturbation approach is thè time-harmonic infinite-body
Green's function for incrementai displacements obtained by Bigoni and Capuani
[5] for small isochoric and piane deformation superimposed upon a nonlinear
elastic and homogeneous strain. The integrai representation relating thè incre-
mentai stress at any point of thè medium to thè incrementai displacement jump
across thè shear band faces, is obtained. Finally, a numerical procedure based on
a collocation method is used to solve thè boundary integrai equation for incident
wave scattering by a shear band.

Keywords: Shear band • Wave propagation • Pre-stress • Non-linear elasticity
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1 Introduction

Localized deformations in thè forra of shear bands are known to be preferential
near-failure deformation modes of ductile materials. The development of shear local-
ization bands has been also shown to be possible in anisotropic composite materials

consisting of random distributions of aligned rigid fibres of elliptical cross section in a

soft elastomeric matrix [1].
When a ductile material is subject to severe strain, failure is preluded by an

emergence of shear bands which initially nucleate in a small area, but quickly extend
rectilinearly and accumulate damage, until they degenerate into fractures. Therefore,
research on shear bands yields a fundamental understanding of thè intimate rules of
failure, so that it may be important in thè design of new materials.

Modelling a shear band as a slip piane embedded in a highly prestressed material

and perturbed by a mode II incrementai strain, reveals that a highly inhomogeneous and
strongly focussed stress state is created in thè proximity of thè shear band and aligned
parallel to it. This evidence, together with thè fact that thè incrementa] energy release
rate blows up when thè stress state approaches thè condition for ellipticity loss, may
explain why shear bands grow rectilinearly and why they are a preferred mode of

failure [2].
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Although it is expected that dynamic effects play an importarli role on shear band
growth, most of thè analyses conducted so far were limited to quasi-static conditions.
The aim of thè present paper is to investigate dynamic perturbations of
stress/deformation incident wave fields, caused by a shear band of finite length, formed
inside thè material at a certain stage of continued deformation. The incrementai
behaviour of a prestressed, elastic, anisotropic and incompressible material is analyzed
in thè dynamic regime, under thè plain strain condition. The integrai representation
relating thè incrementai stress at any point of thè medium to thè incrementai dis-
placement jump across thè shear band faces, is obtained, and a numerical procedure,
based on a collocation method, is used to solve thè boundary integrai equation for
incident wave scattering by a shear band. The proposed approach provides a basis for
thè analysis of propagation of disturbances near thè boundary of loss of ellipticity.
Depending on thè level of prestress and anisotropy, wave patterns are shown to emerge,
with focussing of signals in thè direction of shear bands. Varying thè direction of thè
dynamic perturbation excites different wave patterns, which tend to degenerate to
families of piane waves parallel to thè shear bands, when thè elliptic boundary is
approached.

2 Constitutive Equations

The incrementai behaviour of an infinite, incompressible, nonlinear elastic material,
homogeneously deformed under thè piane strain condition, is considered. According to
Biot [3], thè constitutive relations between thè nominai stress increment tg and thè
gradient of incrementai displacement vy (a comma denotes partial differentiation) can
be expressed in thè principal reference System of Cauchy stress (here denoted by axes
x\d ^2) as follows

tg = (1)

where repeated indices are summed and range between 1 and 2, òy is thè Kronecker
delta, p is thè incrementai in-plane hydrostatic stress and KÌ/U are thè instantaneous
moduli. These moduli possess thè major symmetry K^i = KWJ and are functions of thè
principal components of Cauchy stress, a\d a2, describing thè pre-stress, and of two
incrementai moduli /i and ̂  (which can depend arbitrarily on thè current stress and
strain) corresponding to shearing parallel to, and at 45° to, thè principal stress axes. The
non-null components are:

-,

1122 = ^2211= — H-t, Ka222 = j"* + ^ ~

Ki221 = K2H2 = [I ~ P, K2121 = i" —
(2)
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with

a\ 02
(3)

Equation (1) is complemented by thè incompressibility constraint for incrementai
displacement v,

Vi, i = 0. (4)

Constitutive Eqs. (l)-(4) describe a broad class of material behaviours, including
ali possible elastic incompressible materials which are isotropie in an initial state, but
also materials which are orthotropic with respect to thè current principal stress direc-
tions. The latter situation has interesting practical applications in thè field of
fibre-reinforced elastic materials.

3 The Boundary Value Problem

Let S be a shear band of finite length, formed inside thè infinite medium at a certain
stage of continued deformation. A shear band of finite length can be seen as a very thin
layer of material across which thè normal component of incrementai displacement and
of nominai traction remain continuous, but thè incrementai nominai tangential traction
vanishes, while thè corresponding displacement is not prescribed. Therefore, it is
possible to model such a shear band as a weak surface whose faces can freely slide, but
are constrained to remain in contaci. Note that this slip surface is different from a crack
since it can carry normal tractions, so that only under special symmetry conditions on
thè prestress state it may behave as a crack subjected to shear parallel to it (thè so-called
"mode II" loading in fracture mechanics).

In Fig. 1 a shear band of total length 21 is represented together with a locai ref-
erence System (x\,X2) centered on thè shear band, with *i-axis aligned parallel to thè
shear band, and rotated at an angle 9 = 9o (taken positive when anticlockwise) with
respect to thè principal reference System (x\ ^2) introduced for thè constitutive Eq. (1).

Introducing thè jump operator for a generic function /, smooth on two regions
labeled "+" and "-", and discontinuous across thè surface S, as

=/+ -r (5)

where f± denote thè limits approached by function / at thè faces of thè discontinuity
surface, thè boundary conditions at thè shear band surface S can be written as

[V2J = O, [f?22ll = O, ?21 = O (6)

with vi, Ty being incrementai displacement and incrementai stress components in thè
locai reference system.
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t t m t t t t t t t t M

Fig. 1. Shear band of finite length (21) and principal Cauchy stress components, a\d ai.

In thè hypothesis of lime harmonic motion with circular frequency fì, a wave
characterized by an incrementai displacement field v'-'c(x)e~ifìt travels through thè
medium and is incident upon thè shear band. Then, a scattered incrementai displace-
ment field vf (x)e~'n' is generated by thè interaction of thè incident wave with thè shear
band sudi that thè total incrementai displacement field v,(x)e~'n' is given by

The scattered field vf must satisfy thè radiation condition at infinity and conditions
of finiteness of energy near thè shear band edge. Outside thè shear band, thè incre-
mentai displacement field satisfies thè equations of motion

(8)

where p is thè mass density and n is thè increment of in-plane nominai hydrostatic
stress

. _ 'u +'22 _ ff
71 ~ 2 2 V l > 1

Introducing thè stream function i/^(x) as

V] = i//>2, v2 = — t/^i

and thè dimensionless prestress parameter

(9)

(10)
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Equation (8) can be combined to give

(11)

(12)

Equation (12) provides thè regime classification, which is thè same as for thè
quasi-static case (see Bigoni and Capuani [4]). The results in this paper will be
restricted to thè elliptic regime (E), defined through thè condition that scalars yl and y2

(13)
1+t

are either both real and negative in thè elliptic imaginary regime (EI) or a conjugate pair
in thè elliptic complex regime (EC). Note that A is positive in (EI) and negative in (EC).

A consequence of thè above discussion is that thè emergence of weakly discon-
tinuous surfaces in thè medium corresponds to failure of ellipticity, in thè present
context as in thè quasi-static case. This occurs in a continuous loading path (starting
from E) either when k = 1 (so that yl = 0) or when A = O (so that y: = yz). The former
case defines thè elliptic-imaginary/parabolic boundary, while thè latter thè
elliptic-complex/hyperbolic boundary.

4 Integrai Representation

With reference to any given point y outside thè shear band, thè scattered field can be
given thè following integrai representation in terms of jumps of incrementai dis-
placements and incrementai stress across thè discontinuity surface

vr(y) = - / ( E V (14)

where n is thè unii normal at every point of S, y?(x, y) is thè incrementai displacement
of thè time-harmonic Green function for thè infinite prestressed medium found by
Bigoni and Capuani [5], and Jf(x,y) is thè associated nominai stress increment. In
Eq. (14), due to thè continuity of thè incident incrementai field (vf"1, f|"c)> jumps of thè

total incrementai field ([v,-], [(/,;/]]) coincide with jumps of thè scattered incrementai

field
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Owing to boundary conditions (6),

so that Eq. (14) reduces to

The gradient of incrementai displacement can be evaluated from (16) as

(15)

(16)

(17)

(18)

In order to determine thè incrementai displacement jump fv,|, Eq. (18) is to be
written for y approaching a point of S, where thè boundary conditions (6) are pre-
scribed. Denoting by s thè unit tangent vector at any point of S, boundary condition (63)
can be rewritten as

and thè incrementai stress can be deduced from constitutive Eq. (1):

tfn(y) = -Khnkg [ ifjk(xìy)nì[[vj]]dlx+pòìm.
'

;sc
n • t s

-.men • t s (19)

Hence, using thè incrementai stress representation (18) into boundary condition
(19), leads to

n • t'"cs = i,nkg I tfjk(x, y)m [[v}
Js

(20)

Equation (20) represents thè boundary integrai formulation for thè boundary value
problem at hand. The kernel of thè integrai Eq. (20) is hypersingular of order r~2 as
r —> O, r being thè distance between fìeld point x and source point y:

(21)

Therefore, thè integrai on right-hand side of (20) is specified in thè finite-pari
Hadamard sense.

Equation (20) can be given a more explicit expression by introducing thè relations
for thè incrementai displacement components in both thè principal reference System
(^1,^2) and thè locai reference system (xi,^)'-

T
V = Q V , ra = i _ r i

so that, due to boundary condition (61),

By using Eqs. (23), (20) can be given thè final form

. f
n • t""s = niSmKimicg I '^(n^niSjl
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(22)

(23)

(24)
JS

showing that thè solution of thè problem is given by a linear integrai equation in thè
unknown scalar function [vi], i.e. thè jump of tangential incrementai displacement
across thè shear band faces.

x,/,

I
Fig. 2. Real part of scattered incrementai deviatone strain at different prestress levels.
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In thè particular case do = O, Eq. (24) becomes

(25)

5 Numerical Examples

The boundary integrai Eq. (24) is solved by a collocation method. The shear band is
divided into Q line elements and a linear variation of thè incrementai displacement
jump [?i| is assumed within each line element, with thè exception of two line elements
situated at thè shear band tips, where a square root variation of thè incrementai dis-
placement jump |vij is considered to take into account thè singularity at thè shear band
tip. In particular, thè shear band is discreti/ed with Q = 100 line elements to obtain thè
numerical results shown in this section.

A ductile low-hardening metal, modelled within thè J2-deformation theory [6, 7],
with thè hardening exponent N - 0.4, is considered. In thè J2-deformation theory,
which is particularly suited to analyze thè loading branch of thè constitutive response of
ductile metals, thè prestress parameter k of Eq. (11), and thè orthotropy parameter
£ = nt/(i, are given by thè relations

S
(26)

where N is thè hardening exponent, and A is thè logarithmic stretch representing a
prestrain measure. In thè case of A' = 0.4, failure of ellipticity occurs at a prestress level
k = 0.8753.

A piane incident wave field is considered, with a wavelength ).\ 2nl, where h\s to thè wavelength of a piane transverse wave propagating parallel to

jci-axis with propagation speed e, i.e.

(27)

The materia! dynamic response is shown in terms of level sets of incrementai
deviatoric strain. Level sets of thè real part of incrementai deviatone strain are reported
in Fig. 2 for thè scattered field and in Fig. 3 for thè total field. Depending on thè level
of prestress and anisotropy, wave patterns are shown to emerge, with focussing of
signals in thè direction of shear bands. Varying thè direction of thè dynamic pertur-
bation excites different wave patterns, which tend to degenerate to families of piane
waves parallel to thè shear bands, when thè elliptic boundary is approached.
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Fig. 3. Real part of total incrementai deviatoric strain at different prestress levels.
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The mechanical response of a lead-core hearing device to a real, near-fault, strong
ground motion is simulated by performing a finite element analysis.

An explicit 3-D finite element model of thè hearing device is built (see Fig. 1).
Takìng into account some of thè existing symmetries, a half-model space is considered.

The following materia! models are used: linear, elastic and isotropie model (with
thè assumption that thè yield stress will not be reached) - for thè steel elements (i);
Neo-Hookean model - for thè rubber layers (ii); bilinear model with isotropie hard-
ening after yielding - for thè lead-core (ili) [1-3].

The strong ground motion is modeled by defining an array that contains thè discrete
values of thè x-, y- and z- components of thè support displacements. The elements of
thè array are obtained on thè basis of thè recorded acceleration time-series [4, 5] (see
Fig. 2).

An approximate solution is obtained by decimating thè acceleration time-series.
The time domain is divided into substeps of uniform length. The x-, y- and z- com-
ponents of thè acceleration are assumed Constant within each substep. The x-, y- and z-
components of thè velocity and of thè acceleration are successively defined by inte-
gration of thè recorded acceleration time-series. A time-history finite element analysis
is then performed.

Three strategies to investigate thè mechanical response of thè lead-core bearing
device seen as a component of a base-isolated structure (i.e. a bridge) are taken into
consideration: thè bottoni side of thè bearing device is fixed (e.g. ali nodes that belong
to thè bottom side are constrained) and displacement that model thè ground motion are
applied to nodes that belong to thè top surface as described above (i); point masses are
associated to keypoints that belong to one (top or bottom) surfaces of thè bearing
devices, whereas support displacements are applied to nodes belonging to thè other side
by using thè array defined on thè basis of thè recorded acceleration time-series (ii); thè
bearing device is modeled along with a pari of thè superstructure (iii).




