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ABSTRACT

The incremental behaviour of a prestressed, elastisotropic and incompressible material is
analyzed in the dynamic regime, under the plairairstrcondition. Dynamic perturbations of
stress/deformation incident wave fields, causedatshear band of finite length, formed inside the
material at a certain stage of continued deformatare investigated. At the base of the proposed
dynamic perturbation approach is the time-harmamiinite-body Green's function for incremental
displacements obtained by Bigoni & Capuani [5] femall isochoric and plane deformation
superimposed upon a nonlinear elastic and homogerstain. The integral representation relating the
incremental stress at any point of the medium &iticremental displacement jump across the shear
band faces, is obtained. Finally, a numerical piace based on a collocation method is used to solve
the boundary integral equation for incident wavattering by a shear band.

1 INTRODUCTION

Localized deformations in the form of shear bands lenown to be preferential near-failure
deformation modes of ductile materials. The devalapt of shear localization bands has been also
shown to be possible in anisotropic composite rmageconsisting of random distributions of aligned
rigid fibres of elliptical cross section in a sefastomeric matrix [1].

When a ductile material is subject to severe stfailure is preluded by an emergence of sheardand
which initially nucleate in a small area, but guyckxtend rectilinearly and accumulate damage unti
they degenerate into fractures. Therefore, reseancthear bands yields a fundamental understanding
of the intimate rules of failure, so that it mayib®ortant in the design of new materials.

Modelling a shear band as a slip plane embeddadnighly prestressed material and perturbed by a
mode Il incremental strain, reveals that a highlyomogeneous and strongly focussed stress state is
created in the proximity of the shear band ancheligparallel to it. This evidence, together with fact
that the incremental energy release rate blows lupnvwihe stress state approaches the condition for
ellipticity loss, may explain why shear bands gmaetilinearly and why they are a preferred mode of
failure [2].

Although it is expected that dynamic effects playirmportant role on shear band growth, most of
the analyses conducted so far were limited to estasic conditions. The aim of the present pap&v is
investigate dynamic perturbations of stress/deftionancident wave fields, caused by a shear bdnd o
finite length, formed inside the material at a aigrtstage of continued deformation. The incremental
behaviour of a prestressed, elastic, anisotropiciacompressible material is analyzed in the dycami
regime, under the plain strain condition. The indgepresentation relating the incremental steg¢ss
any point of the medium to the incremental disptaeet jump across the shear band faces, is obtained,
and a numerical procedure, based on a collocatiethad, is used to solve the boundary integral
equation for incident wave scattering by a sheadb@he proposed approach provides a basis for the
analysis of propagation of disturbances near thunthary of loss of ellipticity. Depending on the éév
of prestress and anisotropy, wave patterns arerstmamerge, with focussing of signals in the dicgc
of shear bands. Varying the direction of the dyraperturbation excites different wave patterns clvhi
tend to degenerate to families of plane waves lghtal the shear bands, when the elliptic boundkry
approached.
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2 CONSTITUTIVE EQUATIONS

The incremental behaviour of an infinite, incomikke, nonlinear elastic material, homogeneously
deformed under the plane strain condition, is aersid. According to Biot [3], the constitutive ridas
between the nominal stress incremgptnd the gradient of incremental displacemgnt(a comma
denotes partial differentiation) can be expressdhe principal reference system of Cauchy stiesise(
denoted by axes; andx,) as follows

tij = Kijuvik + 00y (1)
where repeated indices are summed and range betivaed 2;; is the Kronecker deltg, is the
incremental in-plane hydrostatic stress &ag; are the instantaneous moduli. These moduli possess
the major symmetr; ;,; = Ky;;; and are functions of the principal components afiy stressy,
anda,, describing the pre-stress, and of two incrementaduli u andu, (which can depend arbitrarily
on the current stress and strain) correspondistp¢aring parallel to, and at 45° to, the princgisdss
axes. The non-null components are:

Ki111 = fs — % =P Kiizz = Kopra= =l Kooz = p + % -bp (2)

g

Kiz12 =p+ %1 Kiz21 = Ko112 == p, Kooy =p—3
with

0 = 01 — 0y, p=% (3)

Equation (1) is complemented by the incompresgtiionstraint for incremental displacement
vi,i =0. (4)

Constitutive equations (1)-(4) describe a broad<laf material behaviours, including all possible
elastic incompressible materials which are isotrapian initial state, but also materials which are
orthotropic with respect to the current principakss directions. The latter situation has intémgst
practical applications in the field of fibre-reinéed elastic materials.

3 THE BOUNDARY VALUE PROBLEM

Let Sbe a shear band of finite length, formed insi@difinite medium at a certain stage of continued
deformation. A shear band of finite length can &éensas a very thin layer of material across whieh t
normal component of incremental displacement andamhinal traction remain continuous, but the
incremental nominal tangential traction vanishewnhjle the corresponding displacement is not
prescribed. Therefore, it is possible to model sushear band as a weak surface whose faces en fre
slide, but are constrained to remain in contacteMoat this slip surface is different from a craakce
it can carry normal tractions, so that only undegcial symmetry conditions on the prestress state i
may behave as a crack subjected to shear pamaliel(the so-called "mode II" loading in fracture
mechanics).

In Figure 1 a shear band of total lengths2represented together with a local referencteBy$t;,

X,) centered on the shear band, wii{haxis aligned parallel to the shear band, andedtat an angle
6 = 6, (taken positive when anticlockwise) with respextthe principal reference system, (x,)
introduced for the constitutive equations (1).

Introducing the jump operator for a generic funetipsmooth on two regions labeled “+” and “-”,

and discontinuous across the surf&cas

fl1=r"-5" (5)

wheref* denote the limits approached by functipat the faces of the discontinuity surface, the
boundary conditions at the shear band sur&can be written as

[?.] =0, [[fzz]] =0, f21 =0 (6)
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with 9;, £;; being incremental displacement and incrementakstcomponents in the local reference
system.
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Figure 1: Shear band of finite lengtl)(2nd principal Cauchy stress compones{sando,.

In the hypothesis of time harmonic motion with aler frequencyl, a wave characterized by an
incremental displacement fieid"c(x)e“'“t travels through the medium and is incident upenstiear
band. Then, a scattered incremental displacemelatfi© (x)e ~“* is generated by the interaction of
the incident wave with the shear band such thatdta incremental displacement fiak(x)e =¥ is
given by

v; = v + vf° (7)

The scattered field© must satisfy the radiation condition at infinitgdaconditions of finiteness of
energy near the shear band edge. Outside thelsfuedythe incremental displacement field satishies
equations of motion

o . 2
Cp. — vy + (H - E) V122 = —T1 — pQTvy
O- .
Qi — vz + (M + E) V11 = —Trp — pQPv, ®)
wherep is the mass density andis the increment of in-plane nominal hydrostatiess
. Eqq+t
ﬂ=¥—%v1’1 . (9)
Introducing the stream functiap(x) as
v =Yy, Va=-Y, (10)
and the dimensionless prestress parameter
k=%, (11)
equations (8) can be combined to give
* -Qz
A+ k)Y1111 +2 (2% - 1) Ya1zz + (L= k)P 222 = _QT W11 +¥22) . (12)

Equation (12) provides the regime classificatiohjolv is the same as for the quasi-static case (see
Bigoni and Capuani [4]). The results in this papél be restricted to the elliptic regime (E), dedd
through the condition that scalarsandy,



First A. Author, Second B. Author and Third C. Aaith

Vl} _ 1-2p,/u+vVA 2 (23)

Y2 1+k

are either both real and negative in the ellipiaginary regime (EIl) or a conjugate pair in thg#d
complex regime (EC). Note thaAtis positive in (El) and negative in (EC).

A consequence of the above discussion is thattteegence of weakly discontinuous surfaces in the
medium corresponds to failure of ellipticity, irethresent context as in the quasi-static case othig's
in a continuous loading path (starting from E) eitivhenk = 1 (so thay;= 0) or whemA = 0 (so that
y1=7,). The former case defines the elliptic-imaginaaygbolic boundary, while the latter the elliptic-
complex/hyperbolic boundary.

, A=k2—4%+4(%)

4 INTEGRAL REPRESENTATION

With reference to any given poigitoutside the shear band, the scattered field cagives the
following integral representation in terms of jungdsncremental displacements and incremental stres
across the discontinuity surface

. . (14)
vEe(y) = _L ([[tij]]ning(x, y) — (% y)ni[[vj]])dlx

wheren is the unit normal at every point vajg(x, y) is the incremental displacement of the time-
harmonic Green function for the infinite prestresseedium found by Bigoni and Capuani [5], and
f;‘i. (x,y) is the associated nominal stress increment. latému(14), due to the continuity of the incident

incremental field 6¢, t'ii]'-“), jumps of the total incremental fielf], [¢;;]) coincide with jumps of
the scattered incremental fielfsf°], [£77]).
Owing to boundary conditions (6),

so that equation (14) reduces to

vt (y) = [y 20 ymv]dls . (16)
The gradient of incremental displacement can b&uated from (16) as

v ) = — f; i xynv]dL, (17)

and the incremental stress can be deduced frontitttive equations (1):

B ) = ~Kimig f5 £ 9In[v)]dle + P S - (18)

In order to determine the incremental displacememp [v;], equation (18) is to be written fgr
approaching a point db, where the boundary conditions (6) are prescrihoting bys the unit
tangent vector at any point 8f boundary condition ¢ can be rewritten as

n-t¢s = —n-t"s. (19)
Hence, using the incremental stress representg®jrinto boundary condition (19), leads to

n - t7s = 05, K Js tl%’k(x, y)n;[v;]dL, . (20)

Equation (20) represents the boundary integral éitation for the boundary value problem at hand.
The kernel of the integral equation (20) is hypegsiar of order~2 asr — 0, r being the distance
between field poink and source point:

r=lx—yl =0 —y1)? + (2 — y2)?. (21)
Therefore, the integral on right-hand side of (@®pecified in the finite-part Hadamard sense.
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Equation (20) can be given a more explicit expmsby introducing the relations for the incremental
displacement components in both the principal ezfee systemx{, x,) and the local reference system

(%1, %)
v=0Qv, [Q]= [ cosl, sinf, (22)

—sinf, cosf,
so that, due to boundary condition)(6
[[Uj]] = Qj1 [?,1 = Sj[[ﬁﬂ] . (23)
By using equation (23), equation (20) can be gihenfinal form

iinc 9 D (24)
n-t"ts = nlsmKlmkg tij,k(x’ y)nisj [[vl]]dlx
S

showing that the solution of the problem is givgraliinear integral equation in the unknown scalar
function[[?, ], i.e. the jump of tangential incremental displaeatracross the shear band faces.
In the particular cas&, = 0, equation (24) becomes

t5he = [ [(u —p)iZ 1 (xy) + (“ - %) B212(%, Y)] [P1]dLy . )

4 NUMERICAL EXAMPLES

The boundary integral equation (24) is solved lmplocation method. The shear band is divided
into Q line elements and a linear variation of the inaatal displacement jum; | is assumed within
each line element, with the exception of two lit@ments situated at the shear band tips, whereasq
root variation of the incremental displacement jufdp] is considered to take into account the
singularity at the shear band tip. In particulbge shear band is discretized w100 line elements to
obtain the numerical results shown in this section.

A ductile low-hardening metal, modelled within thedeformation theory [6, 7], with the hardening
exponeniN=0.4, is considered. In the-deformation theory, which is particularly suitedanalyze the
loading branch of the constitutive response of itkiotetals, the prestress paramétef equation (11),
and the orthotropy parametge= u./u, are given by the relations

L - -1 . NQ*-1) (26)
M+ 2D+ 1)

whereN is the hardening exponent, akik the logarithmic stretch representing a prestnagasure. In
the case oN=0.4, failure of ellipticity occurs at a prestrdésgel k=0.8753.

A plane incident wave field is considered, with aselengthl; = 2rl, whered, corresponds to the
wavelength of a plane transverse wave propagatrdjlpl tox,-axis with propagation speedi.e.

w1+ k) PR (27)
c= =5 h=2mg

The material dynamic response is shown in ternisved sets of incremental deviatoric strain. Level
sets of the real part of incremental deviatoriaistare reported in Figure 2 for the scatteredi fald in
Figure 3 for the total field. Depending on the lesfeprestress and anisotropy, wave patterns arensh
to emerge, with focussing of signals in the diatf shear bands. Varying the direction of theaalyit
perturbation excites different wave patterns, wiweid to degenerate to families of plane wavedlpara
to the shear bands, when the elliptic boundarps@ached.
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Figure 2: Real part of scattered incremental devi@astrain at different prestress levels.
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Figure 3: Real part of total incremental deviatati@in at different prestress levels.
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