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ABSTRACT 

The incremental behaviour of a prestressed, elastic, anisotropic and incompressible material is 
analyzed in the dynamic regime, under the plain strain condition. Dynamic perturbations of 
stress/deformation incident wave fields, caused by a shear band of finite length, formed inside the 
material at a certain stage of continued deformation, are investigated. At the base of the proposed 
dynamic perturbation approach is the time-harmonic infinite-body Green's function for incremental 
displacements obtained by Bigoni & Capuani [5] for small isochoric and plane deformation 
superimposed upon a nonlinear elastic and homogeneous strain. The integral representation relating the 
incremental stress at any point of the medium to the incremental displacement jump across the shear 
band faces, is obtained. Finally, a numerical procedure based on a collocation method is used to solve 
the boundary integral equation for incident wave scattering by a shear band. 
 
1 INTRODUCTION 

Localized deformations in the form of shear bands are known to be preferential near-failure 
deformation modes of ductile materials. The development of shear localization bands has been also 
shown to be possible in anisotropic composite materials consisting of random distributions of aligned 
rigid fibres of elliptical cross section in a soft elastomeric matrix [1]. 

When a ductile material is subject to severe strain, failure is preluded by an emergence of shear bands 
which initially nucleate in a small area, but quickly extend rectilinearly and accumulate damage, until 
they degenerate into fractures. Therefore, research on shear bands yields a fundamental understanding 
of the intimate rules of failure, so that it may be important in the design of new materials. 

Modelling a shear band as a slip plane embedded in a highly prestressed material and perturbed by a 
mode II incremental strain, reveals that a highly inhomogeneous and strongly focussed stress state is 
created in the proximity of the shear band and aligned parallel to it. This evidence, together with the fact 
that the incremental energy release rate blows up when the stress state approaches the condition for 
ellipticity loss, may explain why shear bands grow rectilinearly and why they are a preferred mode of 
failure [2]. 

Although it is expected that dynamic effects play an important role on shear band growth, most of 
the analyses conducted so far were limited to quasi-static conditions. The aim of the present paper is to 
investigate dynamic perturbations of stress/deformation incident wave fields, caused by a shear band of 
finite length, formed inside the material at a certain stage of continued deformation. The incremental 
behaviour of a prestressed, elastic, anisotropic and incompressible material is analyzed in the dynamic 
regime, under the plain strain condition. The integral representation relating the incremental stress at 
any point of the medium to the incremental displacement jump across the shear band faces, is obtained, 
and a numerical procedure, based on a collocation method, is used to solve the boundary integral 
equation for incident wave scattering by a shear band. The proposed approach provides a basis for the 
analysis of propagation of disturbances near the boundary of loss of ellipticity. Depending on the level 
of prestress and anisotropy, wave patterns are shown to emerge, with focussing of signals in the direction 
of shear bands. Varying the direction of the dynamic perturbation excites different wave patterns, which 
tend to degenerate to families of plane waves parallel to the shear bands, when the elliptic boundary is 
approached. 
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2 CONSTITUTIVE EQUATIONS 

The incremental behaviour of an infinite, incompressible, nonlinear elastic material, homogeneously 
deformed under the plane strain condition, is considered. According to Biot [3], the constitutive relations 
between the nominal stress increment ���� and the gradient of incremental displacement ��,� (a comma 
denotes partial differentiation) can be expressed in the principal reference system of Cauchy stress (here 
denoted by axes �� and �	) as follows 

���� = ����
�
,� + ����� (1) 

where repeated indices are summed and range between 1 and 2, ��� is the Kronecker delta, �� is the 
incremental in-plane hydrostatic stress and ����
 are the instantaneous moduli. These moduli possess 
the major symmetry ����
 = ��
�� and are functions of the principal components of Cauchy stress, �� 
and �	, describing the pre-stress, and of two incremental moduli � and �∗ (which can depend arbitrarily 
on the current stress and strain) corresponding to shearing parallel to, and at 45° to, the principal stress 
axes. The non-null components are: 

����� = �∗ − �	 − �,   ���		 = �		��� − �∗,   �				 = �∗ + �	 − � 

��	�	 = � + �	,   ��		� = �	��	 = � − �,   �	�	� = � − �	 

(2) 

with 

� = �� − �	,     � = �����	  . (3) 

Equation (1) is complemented by the incompressibility constraint for incremental displacement �� ��,� = 0 . (4) 

Constitutive equations (1)-(4) describe a broad class of material behaviours, including all possible 
elastic incompressible materials which are isotropic in an initial state, but also materials which are 
orthotropic with respect to the current principal stress directions. The latter situation has interesting 
practical applications in the field of fibre-reinforced elastic materials. 

 
3 THE BOUNDARY VALUE PROBLEM 

Let S be a shear band of finite length, formed inside the infinite medium at a certain stage of continued 
deformation. A shear band of finite length can be seen as a very thin layer of material across which the 
normal component of incremental displacement and of nominal traction remain continuous, but the 
incremental nominal tangential traction vanishes , while the corresponding displacement is not 
prescribed. Therefore, it is possible to model such a shear band as a weak surface whose faces can freely 
slide, but are constrained to remain in contact. Note that this slip surface is different from a crack since 
it can carry normal tractions, so that only under special symmetry conditions on the prestress state it 
may behave as a crack subjected to shear parallel to it (the so-called "mode II" loading in fracture 
mechanics). 

In Figure 1 a shear band of total length 2l is represented together with a local reference system (���, ��	) centered on the shear band, with ���-axis aligned parallel to the shear band, and rotated at an angle � = �� (taken positive when anticlockwise) with respect to the principal reference system (��, �	) 
introduced for the constitutive equations (1). 

Introducing the jump operator for a generic function f, smooth on two regions labeled “+” and “-”, 
and discontinuous across the surface S, as 

�� = �� − �! (5) 

where �±  denote the limits approached by function � at the faces of the discontinuity surface, the 
boundary conditions at the shear band surface S can be written as 

���	 = 0,     ��̂		 = 0,     �̂	� = 0 (6) 
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with ���, �̂�� being incremental displacement and incremental stress components in the local reference 
system. 

 

 

Figure 1: Shear band of finite length (2l) and principal Cauchy stress components, �� and �	. 

In the hypothesis of time harmonic motion with circular frequency Ω, a wave characterized by an 
incremental displacement field ���%&(()*!�+, travels through the medium and is incident upon the shear 
band. Then, a scattered incremental displacement field ��-&(()*!�+, is generated by the interaction of 
the incident wave with the shear band such that the total incremental displacement field ��(()*!�+, is 
given by 

�� = ���%& + ��-& (7) 

The scattered field ��-& must satisfy the radiation condition at infinity and conditions of finiteness of 
energy near the shear band edge. Outside the shear band, the incremental displacement field satisfies the 
equations of motion 

(2�∗ − �)��,�� + /� − �20 ��,		 = −1� ,� − 2Ω	��  

(2�∗ − �)�	,		 + /� + �20 �	,�� = −1� ,	 − 2Ω	�	 (8) 

where 2 is the mass density and 1�  is the increment of in-plane nominal hydrostatic stress 

1� = ,����,���	 − �	 ��,� . (9) 

Introducing the stream function 3(() as 

�� = 3,	 ,     �	 = −3,� (10) 

and the dimensionless prestress parameter 

4 = �	5 , (11) 

equations (8) can be combined to give 

(1 + 4)3,���� + 2 /2 5∗5 − 10 3,��		 + (1 − 4)3,				 = − 7+�
5 (3,�� + 3,		) . (12) 

 
Equation (12) provides the regime classification, which is the same as for the quasi-static case (see 

Bigoni and Capuani [4]). The results in this paper will be restricted to the elliptic regime (E), defined 
through the condition that scalars 8� and 8	 
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8�8	9 = �!	5∗ 5⁄ ±√<���  ,     Δ = 4	 − 4 5∗5 + 4 /5∗5 0	
, 

(13) 

are either both real and negative in the elliptic imaginary regime (EI) or a conjugate pair in the elliptic 
complex regime (EC). Note that ∆ is positive in (EI) and negative in (EC). 

A consequence of the above discussion is that the emergence of weakly discontinuous surfaces in the 
medium corresponds to failure of ellipticity, in the present context as in the quasi-static case. This occurs 
in a continuous loading path (starting from E) either when k = 1 (so that 8�= 0) or when ∆ = 0 (so that 8�= 8	). The former case defines the elliptic-imaginary/parabolic boundary, while the latter the elliptic-
complex/hyperbolic boundary. 

 
4 INTEGRAL REPRESENTATION 

With reference to any given point y outside the shear band, the scattered field can be given the 
following integral representation in terms of jumps of incremental displacements and incremental stress 
across the discontinuity surface 

�?-&(@) = − A /B����CD���?((, @) − ����? ((, @)D�B��C0EFGH  
(14) 

where n is the unit normal at every point of S, ��?((, @) is the incremental displacement of the time-
harmonic Green function for the infinite prestressed medium found by Bigoni and Capuani [5], and ����? ((, @) is the associated nominal stress increment. In equation (14), due to the continuity of the incident 

incremental field (���%&, �����%&), jumps of the total incremental field (��� , B����C) coincide with jumps of 

the scattered incremental field (���-& , B����-&C). 
Owing to boundary conditions (6), 

B����CD� = 0 (15) 

so that equation (14) reduces to 

 �?-&(@) = J ����? ((, @)D�B��CEFGH  . (16) 

The gradient of incremental displacement can be evaluated from (16) as 

�?,�-& (@) = − J ����,�? ((, @)D�B��CEFGH  , (17) 

and the incremental stress can be deduced from constitutive equations (1): 

��
K-& (@) = −�
K�? J ����,�? ((, @)D�B��CEFGH + �� �
K . (18) 

In order to determine the incremental displacement jump ��� , equation (18) is to be written for y 
approaching a point of S, where the boundary conditions (6) are prescribed. Denoting by s the unit 
tangent vector at any point of S, boundary condition (63) can be rewritten as 

L ∙ N�-&O =  −L ∙ N��%&O . (19) 

Hence, using the incremental stress representation (18) into boundary condition (19), leads to 

 L ∙ N��%&O = D
PK�
K�? J ����,�? ((, @)D�B��CEFGH  . (20) 

Equation (20) represents the boundary integral formulation for the boundary value problem at hand. 
The kernel of the integral equation (20) is hypersingular of order Q!	 as Q → 0, Q being the distance 
between field point x and source point y: 

Q =  |( − @| = T(�� − U�)	 + (�	 − U	)	 . (21) 

Therefore, the integral on right-hand side of (20) is specified in the finite-part Hadamard sense. 
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Equation (20) can be given a more explicit expression by introducing the relations for the incremental 
displacement components in both the principal reference system (��, �	) and the local reference system 
(���, ��	): 

V = WV�  ,     XWY = Z cos �� sin ��− sin �� cos ��` 
(22) 

so that, due to boundary condition (61), 

B��C = a������ = P�����  . (23) 

By using equation (23), equation (20) can be given the final form 

L ∙ N��%&O = D
PK�
K�? A ����,�? ((, @)D�P����� EFGH  
(24) 

showing that the solution of the problem is given by a linear integral equation in the unknown scalar 
function ���� , i.e. the jump of tangential incremental displacement across the shear band faces. 

In the particular case �� = 0, equation (24) becomes 

��	��%& = J b(� − �)��	�,�	 ((, @) + /� − �	0 ��	�,	� ((, @)c ���� EFGH   . (25) 

 
4 NUMERICAL EXAMPLES 

The boundary integral equation (24) is solved by a collocation method. The shear band is divided 
into Q line elements and a linear variation of the incremental displacement jump ����  is assumed within 
each line element, with the exception of two line elements situated at the shear band tips, where a square 
root variation of the incremental displacement jump ����  is considered to take into account the 
singularity at the shear band tip. In particular, the shear band is discretized with Q=100 line elements to 
obtain the numerical results shown in this section. 

A ductile low-hardening metal, modelled within the J2-deformation theory [6, 7], with the hardening 
exponent N=0.4, is considered. In the J2-deformation theory, which is particularly suited to analyze the 
loading branch of the constitutive response of ductile metals, the prestress parameter k of equation (11), 
and the orthotropy parameter d = �∗ �⁄ , are given by the relations 

4 =  ef − 1ef + 1 , d = g(ef − 1)2(ln e)(ef + 1) 
(26) 

where N is the hardening exponent, and λ is the logarithmic stretch representing a prestrain measure. In 
the case of N=0.4, failure of ellipticity occurs at a prestress level k=0.8753. 

A plane incident wave field is considered, with a wavelength e� = 21F, where e� corresponds to the 
wavelength of a plane transverse wave propagating parallel to ��-axis with propagation speed c, i.e. 

i = j�(1 + 4)2 , e� = 21 iΩ 
(27) 

The material dynamic response is shown in terms of level sets of incremental deviatoric strain. Level 
sets of the real part of incremental deviatoric strain are reported in Figure 2 for the scattered field and in 
Figure 3 for the total field. Depending on the level of prestress and anisotropy, wave patterns are shown 
to emerge, with focussing of signals in the direction of shear bands. Varying the direction of the dynamic 
perturbation excites different wave patterns, which tend to degenerate to families of plane waves parallel 
to the shear bands, when the elliptic boundary is approached. 
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Figure 2: Real part of scattered incremental deviatoric strain at different prestress levels. 

 

 

Figure 3: Real part of total incremental deviatoric strain at different prestress levels. 
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